SECTION 3

CPU STRUCTURE AND OPERATION

This section explains the structure, addressing modes and operation of the cen-
tral processing unit (CPU) in the HP-83/85.

The HP-83/85 CPU consists of a 64]0-byte register bank, a pair of address
pointers called the address register pointer (ARP) and the data register pointer
(DRP), an arithmetic and Togic unit (ALU) and a shifter, and a set of status
indicators.

Register Bank E

ARP

DRP D LSB
Status
L —_— Indicators

CENTRAL PROCESSING UNIT

3-1

CPU Structure and Operation

ARP AND DRP

The address register pointer (ARP) and the data register pointer (DRP) are inde-
pendent six-bit CPU Tocations. Both the ARP and the DRP can be used to address
any of the bytes in the CPU register bank.

The CPU register addressed by the ARP 1is called the address register, or AR. The
register addressed by the DRP is called the data register, or DR.

CPU REGISTER BANK

The heart of the CPU is the register bank of 64 8-bit bytes of random-access
memory. These bytes form registers which are grouped into two-byte (16-bit) sec-
tions and eight-byte (64-bit) sections. The diagram on the following page shows
the organization of the CPU registers, which are numbered from 0 to 778, and
specified by Rp - R77.

Some of the registers in the CPU register bank are dedicated by hardware to
specific tasks.

HARDWARE-DEDICATED REGISTERS

The first 404 registers of the CPU (R - R37) are divided into two-byte (16-bit)
sections. Of these, many of the bytes are reserved by hardware for use as
special-purpose registers. These hardware-dedicated registers are:

Register Bank Pointer. Register 0 is a pointer to the remainder of the CPU
register bank. Register 1 is inaccessible except through register 0.

Index Scratch. Registers 2 and 3 are scratch registers used for indexed address-

ing (X). Their contents are destroyed by execution of instructions using indexed
addressing.

Program Counter. Registers 4 and 5 contain the program counter (PC).

CPU Structure and Operation

CPU Pointer

0

1

2 X
3 X
4 PC
5

6

7

______PC
Subroutine RTN SP
Subroutine RTN SP

-«—— Boundary

23 Usually used for
24 addresses.

30 2-Byte
Section

DRP —_— 34

ARP —_— 46

Usually used for
floating point
| numbers.

63 8-Byte
64 Section

CPU REGISTER BANK

3-3

CPU Structure and Operation

Return Stack Pointer. Registers 6 and 7 contain the pointer for the subroutine
return stack. (The space allocated for this stack in the computer's system mem-
ory comprises addresses 101300 through 101777, although sometimes these addresses
may be used for other purposes.)

In addition to the special-purpose registers described above, certain other CPU
registers are commonly used for specific purposes by internal HP-83/85 routines.
(For example, registers R40 and R50 are used by internal mathematics routines for
addition, subtraction, etc.)

REGISTER BOUNDARIES

The CPU registers are separated by boundaries, shown as heavy lines in the illus-
tration of the register bank above. In the first 32 bytes, there is a boundary
every two bytes. In the next 32 bytes, there is a boundary every eight bytes.

This partitions the first 32 bytes into 16-bit sections (used primarily for
address manipulation) and the next 32 bytes into 64-bit sections (used primarily
for floating point quantities). The register array is, therefore, capable of
holding up to four floating-point numbers and twelve 16-bit addresses.

MULTI-BYTE OPERATIONS

The HP-83/85 CPU structure permits "multi-byte operations,” involving a string of
bytes rather than just a single byte. A string can consist of from one to eight
consecutive CPU registers. The exact number is determined by the DRP and the
next boundary.

The locations involved in a multi-byte operation are those beginning with the
location pointed to by the DRP and ending with the next boundary. The next
boundary is the one in the direction of increasing addresses (except in the case
of a shift right instruction.)

CPU Structure and Operation

The following examples should help explain this concept:
--A multi-byte increment with DRP set to 70 (that is, executing ICM R70) results

in an increment of the 64-bit quantity stored between locations R70 and R77.
Higher addresses always refer to more significant bytes.

DRP

— 00 Fo
0 R
00

7 s
0 R
I
;/////////// A6

R77

Boundary ——p

--A multi-byte test with DRP set to 44 (that is, executing TSM R44) results in
the status flags being set according to the data found in registers R44, R45,
R46 and R47. Location R47 is the most significant byte.

R40

R41

R42
DRP R43

— 00 ™
0 M

;///////////A Ras

Boundary ———»

3-5

CPU Structure and Operation

--A multi-byte complement with DRP set to 37 (that is, executing TCM R37) com-
plements only R37.

R34

R35

DRP R36
Boundary —

The only exception to the rule that the next boundary is in the direction of
increasing addresses is the shift right instruction. If a multi-byte instruc-
tion is a shift right, then the next boundary is the one in the direction of
decreasing addresses.

Thus:
--A multi-byte shift right with DRP set to 31 (that is, executing LRM R31) shifts
the combined contents of R31 and R30 right. R31 is the most significant byte.

R26
R27

Boundary —— .
DRP /45 R30

| — Lz R

SINGLE-BYTE OPERATIONS

Besides executing multi-byte instructions, the HP-83/85 CPU also executes in-
structions using single bytes. In a single-byte operation, the DRP refers to
only a single byte.

TWO-OPERAND OPERATIONS

Two-operand multi- and single-byte instructions may also be executed.

CPU Structure and Operation

In the

case of a multi-byte two-operand instruction, DRP points to the first operand
and ARP points to the second. DRP is still used to determine the number of
bytes involved for the first operand. The other operand consists of the same

number of bytes, beginning with the location to which the ARP points.
example:

For

--A multi-byte add with DRP set to 60 and ARP set to 50 (that is, executing ADM
R60, R50) results in the 64-bit quantity starting with R50 being added to the
64-bit quantity starting with R60. The sum is stored in R60 through R67.

ARP

| —

DRP

0
w4

R50

3-7

/422?;4 R51
7] R
) v
) R
W RS
N R60 — |\
nmimgy A 00000
niliiny Rz v
Ry s 20 44
Ny A w
nmiiny #es 0000
Mg s 00000
§§§§§§§§§§§§§§ R67 ;%ZZZZZ%ZZ&Z&ZZZ

R60
Ré61
R62
R63
R64
R65
R66
R67

CPU Structure and Operation

--A multi-byte Toad with DRP set to 74 and ARP set to 11 (that is, executing LDM
R74, R11) transfers the contents of four bytes beginning with R11 to locations
R74, R75, R76 and R77.

ARP R10

7 e

777 "

R15

R70
R71

R72
DRP R73

|— 77
7 s

W e

3-8

CPU Structure and Operation

--A multi-byte store with DRP set to 74 and ARP set to 11 transfers the contents
of R74 through R77 to the four consecutive locations beginning with RI1.

ARP

——>7///////%

7
A,

A,

DRP

N—V 777

00

0000
v

R10
R11

R12
R13

R14
R15

R70
R71
R72
R73
R74
R75
R76

R77

Remember: The number of bytes in a multi-byte operation is always determined by

the setting of DRP (not ARP) and the next boundary.

There are also two-operand operations where the DRP points to one operand and

the second is located in the computer's memory.

to be operated upon is determined by the DRP.

Once again, the number of bytes

The corresponding number of bytes

are accessed from memory beginning with the calculated effective address.

3-9

CPU Structure and Operation

NUMBER REPRESENTATION

Numbers in the HP-83/85 are manipulated in a variety of formats. The user has
the option of specifying quantities as octal, BCD or decimal. In addition, the
internal quantities used in the HP-83/85 occur in various formats, depending on
their use.

ADDRESSES

An address, whether in the CPU register bank or in system memory, is always an
octal value that occupies two bytes, or 16 bits. The lower-numbered byte con-
tains the less significant byte of the address, and the higher-numbered byte
contains the more significant byte of the address. Only the first byte of the
two-byte address is referenced by other instructions.

For example, address 177405, translated into a binary quantity, appears like
this:

1 7 7 4 0 5 } Octal Representation
1 111 111 100 000 101 } Binary Representation

When this binary quantity is split into two eight-bit registers, it appears as:

11 11 111 00 000 101 Binary Quantity
3 7 7 0 0 5 Register Contents

Only the first byte of the two-byte address is referenced by other instructions,
so an address pointing to ROM location 177405 from the CPU might look like this:

ARP

I 0 0 5 R32

CPU Structure and Operation

NUMERIC QUANTITIES

Numeric quantities in the HP-83/85 may be of three types: Real, short, and inte-
ger. The following illustration shows how numeric quantities are represented
internally in the computer. For the illustration, the numbers are shown in CPU
registers R40 - R47.

Real Integer Short
40 E1 E2 45 D1 DO 44 EO E1
41 EO MS 46 D3 D2 45 M3 M4
42 M10 M1t 47 S D4 46 M1 M2
43 M8 M9 47 |0 0 SM SE Mo
44 Mé M7
45 M4 M5
46 M2 M3
47 MO M1

FORMATS OF NUMERIC QUANTITIES

In real or floating-point format, the mantissa is a 12-digit quantity expressed
as a magnitude. Each digit consists of four bits. The least significant digit,
represented by MI1, is stored in R42. The most significant digit, represented by
M@, is stored in R47. The number is normalized; thus, there is an implied decimal
point between Mp and M1 in R47. The sign of the mantissa is stored in the least
significant digit of R41. A zero is stored as the sign of the mantissa if the
number is positive; otherwise, a nine is stored. The exponent is a three-digit
number stored in R40 and in the most significant digit position of R41. Expo-
nents are expressed in ten's complement form.

Integer variables are stored in three bytes, with five digits and a sign. Short

variables are stored as a mantissa sign (SM) an exponent sign (SE), five mantissa
digits, and a two-digit exponent.

3-11

CPU Structure and Operation

STATUS INDICATORS

The HP-83/85 CPU contains eight flags and a four-bit register for program status.
The flags signal the present condition of the data, while the four-bit register
serves as an "extended" register for counting and data manipulation.

Status can affect or be affected by CPU instructions. In the HP-83/85 CPU, the
instruction set has data movement instructions of both the arithmetic and non-
arithmetic types. These instructions include:

--Arithmetic: Add, subtract, compare, increment, decrement, complement.

--Non-arithmetic: Load, store, logical and, or, exclusive or, shift, clear, test.

The following status indicators are present in the HP-85 CPU:

E: Extend Register. A four-bit register which can be cleared, incremented, or
decremented independent of DCM. Shifts can be made into and out of the
extend register only when DCM is set.

DCM: Decimal Mode Flag. When set, binary-coded decimal (BCD) operations will
be performed. When cleared, binary operations will be performed. The
operations affected by DCM are all the arithmetic data movement instruc-
tions and the shift instructions. The DCM flag can be modified only by
two CPU instructions, BCD and BIN. The BCD instruction sets DCM, while
the BIN instruction clears DCM.

CY:

OVF:

LSB:

CPU Structure and Operation

Carry Flag. This one-bit register can be shifted into and out of when DCM
is cleared (i.e., BIN mode). It is loaded with the carry from the most
significant bit (MSB) according to the table shown here:

CPU Instruction Carry Flag
Add CY set according to carry of add.
Subtract CY set if result is positive, cleared if result is
negative.
Compare Same setting as for subtract.
Increment CY set as for add.
Decrement CY set as for subtract.
Shift CY loaded with bit shifted out, if in binary mode.

(Right shift loads CY from LSB.)

Complement CY cleared by nine's complement, set by ten's com-
plement, if contents of data register (DR) were
zero.

A11 other data movement instructions clear CY.

Overflow Flag. The overflow flag is set whenever the result of a binary

arithmetic operation exceeds the maximum positive or negative number that
can be contained in the destination register. This can occur as the result
of a compare, binary add, binary subtract, binary complement, or binary
left shift instruction. Thus, an arithmetic data movement instruction or

a left shift with DCM cleared affects OVF; all other data movement instruc-
tions clear OVF. The remaining instructions do not affect OVF.

Least Significént Bit Flag. LSB is set the same as the least significant

bit (LSB) of the result of each data movement instruction.

CPU Structure and Operation

MSB:

LDZ:

RDZ:

Most Significant Bit Flag. MSB is set the same as the most significant bit
(MSB) of the result of each data movement instruction.

Zero Flag. Z is set if a data movement instruction produces a result of
all zeros. If the result is not all zeros, Z is cleared. Other instruc-
tions do not affect Z.

Left Digit Zero Flag. LDZ is affected only by data movement instructions.
LDZ is set if the most significant nibble (four bits) of the result is 0000.
If the most significant four bits are not 0000, LDZ is cleared.

Right Digit Zero Flag. RDZ is affected only by data movement instructions.
RDZ is set if the least significant nibble (four bits) of the result is
0000, regardless of the setting of DCM. If the most significant four bits
are not 0000, RDZ is cleared.

Status information is based on the entire single or multi-byte quantity that is
processed. The figure below illustrates status on a three-byte quantity.

MSB LSB
E €«—
CY«— |7 6543210 76543210 76543210
OVF #——
Nt et . ——
LDZ RDZ
ZERO

MULTI-BYTE STATUS

A1l multi-byte operations except right shift start execution with the least sig-
nificant byte. A1l status flags except LSB, RDZ, and DCM are updated after each
byte of an operation, and therefore will be correct whenever the memory boundary
is reached. The LSB and RDZ flags are set only for the first byte.

CPU Structure and Operation
For a shift right instruction, where the shift is from the most significant byte

to the least significant, the MSB and LDZ flags are set only for the most signif-
icant byte; the rest are updated after each byte.

For a complete 1list of all CPU instructions and their relationships to status
indicators, refer to section 4 and appendix C.

3-15

SECTION §

ASSEMBLER INSTRUCTIONS

The HP-83/85 Assembler instructions can manipulate data in the HP-83 or HP-85
central processing unit, and through the CPU, in HP-83/85 RAM as well.

Assembler instructions are of two types: Instructions and pseudo-instructions.
Instructions operate directly on the CPU and during assembly are translated
directly into machine language object instructions. They are specified by means
of opcodes. Pseudo-instructions are entered in the same way as CPU instructions,
but they are actually messages to the Assembler ROM. They are specified by means
of pseudo-opcodes.

ENTERING INSTRUCTIONS AND PSEUDO-INSTRUCTIONS

Source code is typed into the CRT by entering the line number, followed by a
label (if any), followed by the opcode, followed by the address or operand, if
required, followed by a comment (if any). When [END LINE] is then pressed, the
line is parsed and the elements are assigned to their respective fields on the
CRT.

1-4 characters 1-6 characters

Line Number Label I Opcode Operand/Address J Comment

|

Sp:ce Spéce Space

SOURCE CODE INSTRUCTION FORMAT

In assembler mode, the HP-83/85 is sensitive to spacing among the elements of a
line of source code. For example:

Assembler Instructions

thtggiment entered to After parsing appears as:
e as.:
&0 LEL LDMD R70,R40
%) tﬁte%nﬁgbiﬂﬁa’jﬁ? 70 Label JSB =NUMVAL
80 FUBD RS52,+R12
80 PUBD R52,+R12 - o
99 PUBD 52,+12 9‘:’_ FUBD RS2, +R12
1990 CLB R40 !THIS IS A COMMENT 100 CLEB R40

'THIS I8 A COMMENT

t !

Label Opcode Operand or
Field Field Address Field

LINE NUMBERING

Each 1ine of binary program source code must begin with a line number. These
line numbers may be entered individually, or automatic line numbering may be
specified with the [AUTO] key.

These line numbers are useful for entering and editing a binary program, but do
not correspond to the addresses of the machine language object code that is
generated during assembly.

LABELS

No spaces or one space may be typed between the line number and the label field.
A label is optional, and may be from one to six characters. A label cannot have
a digit as the first character, nor a space as any character; one or more spaces
denote the end of the label.

When a label has been entered and parsed, it appears in a label field on the
CRT or printer. This field begins in the second character space to the right of
the Tine number.

OPCODES AND PSEUDO-OPCODES

The opcodes and pseudo-opcodes for assembly language instructions may be entered

after typing at least two spaces after the line number or at least a single space
after a label. Entries in the opcode field are restricted to valid instructions

and pseudo-instructions. Blanks are not allowed within the opcode field.

Assembler Instructions

When an opcode or pseudo-opcode has been entered and parsed, it begins in the
field nine spaces to the right of the line number.

Opcodes (but not pseudo-opcodes) may be either single-byte (specified by a "B")
or multi-byte (specified by an "M").

OPERANDS OR ADDRESSES

Depending upon the format of the instruction, the operand or address field may
specify one or more of the following:

--Data Register. A CPU register which may signify single-byte or multi-byte
operation.

--Operand. May be a CPU register or a memory location. Depending on the ad-
dressing mode, memory can be addressed immediately, indirectly, or by an index.

--Register Pointer. Constant used to load ARP or DRP.

--Label. A label to specify an address or constant.

--Nothing. Some instructions do not require an entry in this field.

An AR or DR in the CPU is specified by an "R" before the register number (e.g.,
R32), or by an "X" before the register number when indexed addressing is used.
The "R" may be omitted when CPU register numbers are typed, since the assembler
inserts a missing "R" automatically. The "X" must be typed to indicate register
numbers for indexed operations.

COMMENTS

A comment or remark must begin with an exclamation point. A comment must be
typed beginning in the first or second space after the line number, or beginning
one or more spaces after the other elements of the line of source code.

After being parsed, a comment which has been entered immediately following the
other elements of the line begins in column 33; thus, on the HP-83/85 CRT it
appears on the following line. A peripheral printer with a column width greater
than 32 can permit a comment to appear on the same line as the source code
statement.

4-3

Assembler Instructions

NUMERIC VALUES

Numeric values can be entered in octal, BCD or decimal notation. A BCD value is
entered by immediately following the value with a "C," while a decimal value is
followed by a "D;" otherwise the assembler assumes octal values.

Example: LDM R45,=31, 19C, 25D Loads the same bit pattern into registers R45,
R46 and R47.

Registers can be specified by octal values only.

SYNTAX AND SYMBOLS USED

The following shows the syntax guidelines once again and also includes a Tist of
the symbols used in the descriptions of assembler instructions.

LDB Instructions shown in capital letters, but not underlined, must be
entered exactly as shown (in either upper-case or lower-case letters).

Items shown underlined (e.g., DR) are expressions or names that must be
specified in the instruction, statement, or command.

[] Items shown between brackets are optional. (e.g., CMB[D] indicates
there is a CMB instruction and also a CMBD instruction available.) If
several items are stacked between brackets, any one or none of the

items may be specified.

Three dots (ellipsis) following a set of brackets indicate that the
items between the brackets may be repeated.

“ Is transferred to.
() Contents of.

Complement (e.g., x is complement of x). This is one's complement if
DCM=0 and nine's complement if DCM=1.

B/M

1>

ARP

DRP

R(x)

M(x)

PC

SP

EA

ADR

Assembler Instructions

Single-byte or multi-byte instruction. |

Address register location--Tocation of first byte addressed by ARP.
Can be a register (e.g., R32), R* or R#.

Data register location--location of first byte addressed by DRP. Can
be a register (e.g., R32), R* or R#.

Address mode for load/store. Can be blank (for immediate), D (for
direct), or I (for indirect).

Address Register Pointer. A 6-bit register used to point to one of 64
CPU registers. The byte to which ARP points is often used as the first
of two consecutive bytes forming a memory address.

Data Register Pointer. A 6-bit register used to point to one of 64 CPU
registers. The location to which DRP points is often used as the des-
tination for data loaded into the CPU.

CPU register addressed by (x).

Memory location addressed by (x). (x) must be a 16-bit address.

Program Counter. CPU registers R4 and R5. Used to address the instruc-
tion being executed.

Subroutine Stack Pointer. CPU registers 6 and 7. Used to point to the
next available location on the subroutine return address stack.

Effective Address. The location from which data is read for load-type
instructions or the location where data is placed for store-type
instructions.

Address. The two-byte quantity directly following an instruction that

uses the Titeral direct, Titeral indirect, index direct or index indi-
rect addressing mode. This quantity is always an address.

4-5

Assembler Instructions

The following pages show the HP-83/85 Assembler ROM instructions that are used to
manipulate the CPU and external memory. These instructions are illustrated in an
abbreviated form in this section; for a complete list of all forms of each in-

struction, refer to appendix C.

Also contained in this section are the Assembler ROM pseudo-instructions.

LOAD/STORE INSTRUCTIONS

The instructions for loading and storing data have access to all eight addressing
modes, and they can be single-byte or multi-byte.

LD
Load

Format:

Operation:

Description:

ST

Store

Format:

Operation:

Description:

CPU Instruction

LDBA DR, operand Single byte
LDMA DR, operand Multi-byte
DR«(EA)

Data register is loaded with the contents of the effective address
determined by the operand and the addressing mode.

CPU Instruction

STBA DR, operand Single byte
STMA DR, operand Multi-byte
(DR)~EA

Contents of data register are stored in effective address deter-
mined by the operand and the addressing mode.

4-6

Assembler Instructions

ADDRESSING MODES

The HP-83/85 CPU allows for several addressing modes. These include literal,
register, indexed and stack modes of memory access.

Not all addressing modes are available to all instructions. The load (LD) and
store (ST) instructions have access to all addressing modes except stack address-
ing, and they are used here for illustration: For a list of the addressing modes
available to any particular instruction, consult the description of that instruc-
tion in this section or in appendix C.

In addressing, all addresses are referred to as two-byte quantities. Because all
addresses are two consecutive bytes, only the first byte of the sequence is ref-
erenced. For instance, the AR is actually a single byte within the CPU register
bank that is pointed to by the ARP. When the AR is described as being an address,
remember that R (ARP) contains the low byte of the address and R (ARP + 1) con-
tains the upper byte of the address.

The multi-byte feature of the CPU allows data to be manipulated in quantities of
from one to eight bytes. Therefore, in the following descriptions, only the
address of the first byte of data is specified. As explained earlier, the number
of bytes is determined by the distance of the DR from the next consecutive
boundary.

In the following descriptions, the effective address (EA) points to the first
byte of data to be loaded for load instructions.

For store instructions, EA points to the location where the first byte of data
is stored.

REGISTER MODE

The first category of addressing is the register addressing mode. This mode
allows the CPU registers (64]0 bytes) to be used as addresses as well as for
data. There are three levels of register addressing modes.

4-7

Assembler Instructions

REGISTER IMMEDIATE

Format: Opcode B/M DR, AR
Effective
Address: AR

Description: The operand is another CPU register (single or multi-byte) begin-
ning at AR. Thus, the AR is the source for load instructions or
the destination for store instructions.

CPU Register Bank

DRP

REGISTER IMMEDIATE ADDRESSING

Examples: LDB R36, R32 Loads contents of R32 into CPU register R36.

STM R40, R50 Stores contents of registers R40 through R47 ‘into
registers R50 through R57.

REGISTER DIRECT

Format: Opcode B/M D DR, AR
Effective
Address: M(AR)

Description: The effective address is a location in system memory that is
addressed by the AR. This mode is useful when using a CPU regis-
ter as a pointer to system memory.

4-8

Assembler Instructions

CPU Register Bank System Memory
ARP
| | — ar - . - EA
DRP -
| | —— or
REGISTER DIRECT ADDRESSING
Examples: LDBD R36, R32 Loads CPU register R36 with the contents of the

system memory location addressed by R32-R33.

STMD R40, R50 Stores contents of R40-R47 into system memory
beginning with location addressed by R50-R51.

REGISTER INDIRECT

Format: Opcode B/M I DR, AR
Effective
Address: M(M(AR))

Description: The address register points to a system memory location, which in
turn points to another memory location that is the effective
address.

Assembler Instructions

System Memory

CPU Register Bank

DRP
| ——> DR l - l

ARP
[—— AR =

— EA -
REGISTER INDIRECT ADDRESSING
Example: LDBI R36, R32 If R32 and R33 contain the address 105371, loads

CPU register R36 with the contents of the memory location that is
addressed by the contents of system memory locations 105371 and
105372.

LITERAL MODE

The second of the categories of address modes is the literal mode. In literal
mode, the operand is a literal quantity stored in memory immediately following
the opcode. A literal string can be:

--BCD constant, e.g., 99C, ..., 79C (5 10g bytes)

--Octal constant, e.g., 12, ..., 277 (< 10g bytes)
--Decimal constant, e.g., 201D, ..., 9D (s 108 bytes)

--Label (The Titeral quantity is a one- or two-byte value or address assigned
to the label.)

The programmer is responsible for ensuring that the number of bytes of the 1it-
eral string matches the DRP setting. The assembler does not check for mismatch.

Assembler Instructions

There are three types of literal addressing modes.

LITERAL IMMEDIATE

Format: Opcode B/M DR, = literal
Effective
Address: (PC+1)

Description: The operand is a literal string that, during assembly, is stored 1n‘
memory immediately after the instruction opcode. This mode is use-
ful for loading constants into the CPU register bank.

System Memory

CPU Register Bank
4 PC
> Instruction
5 PC
Literal EA
DRP
——— DR
LITERAL IMMEDIATE ADDRESSING
Examples: LDB R36, = 3D Loads 3]0 into CPU register R36.
LDM R40, = 0,0,0,0,0,0,0,120 Loads 1208 (i.e., a floating-point

5) into registers R40-R47.

LITERAL DIRECT

Format: Opcode B/M D DR, = label
Effective
Address: M(PC+1)

Assembler Instructions

Description:

DRP

The operand is a memory location that, after assembly, is addressed
by a two-byte literal quantity stored immediately after the instruc-
tion opcode. The label defines the two-byte Titeral quantity to be
used by the Assembler ROM.

System Memory

CPU Register Bank

Instruction
[w]/ 2o I

5 PC address

——— DR EA -

Examples:

LITERAL DIRECT ADDRESSING

LDBD R34, = ROMFL Loads the contents of the memory location
addressed by the label ROMFL into CPU register R34.

STMD R74, = CHIDLE Stores contents of CPU registers R74 through
R77 into four memory locations beginning with the location addressed
by the label CHIDLE.

LITERAL INDIRECT

Format:

Effective
Address:

Description:

Opcode B/M I DR, = label

M(M(PC+1))

The operand is a memory location that, after assembly, is addressed
by a two-byte memory location that itself is addressed by a two-byte
literal quantity stored immediately after the instruction opcode.
The label defines the two-byte literal quantity used by the Assem-
bler ROM.

CPU Register Bank

Assembler

System Memory

Instructions

Instruction

2-byte

Literal

2-byte

address

EA

Stores the contents of CPU register R30 into

the memory location addressed by another memory location which is
itself addressed by the two-byte literal quantity specified by the

. o /
5 PC
DRP
l — » DR
LITERAL INDIRECT ADDRESSING
Example: STBI R30, = ADDR
label ADDR.
INDEX MODE

The index mode is the third addressing category.

ing data when the data is stored in a table

base address is added to an offset to create the desired address.

forms this addition using CPU registers 2 a

Indexing is useful for access-

. In indexed addressing, a fixed

nd 3.

The CPU per-
After an index instruction,

registers 2 and 3 contain the effective address (i.e., the sum of the base and

the offset).
There are two modes for indexed addressing.

INDEX DIRECT

Format: Opcode B/M D DR, XAR, label
Effective
Address: M(AR+(PC+1))

Neither the original base nor the offset is altered in memory.

Assembler Instructions

Description: The effective address is found by adding (in binary) the two-byte
contents of the AR to the two-byte address that immediately follows
the instruction opcode in memory.

System Memory

CPU Register Bank

- EA
>)2 /
/ hp 0 -
4 PC __— Instruction
5 PC 2-byte
address lw
ARP
e l - AR
DRP
— DR

INDEXED DIRECT ADDRESSING

Example: LDBD R36, X30, TABLE Loads into CPU register R36 the contents of
the memory location addressed by registers R2 and R3. R2 and R3
contain the sum of the contents of R30 and the contents of the
address TABLE.

INDEX INDIRECT

Format: Opcode B/M I DR, XAR, label
Effective
Address: M(M(AR+(PC+1)))

Description: The effective address is found in a memory location. This memory
location is found by adding (in binary) the two-byte contents of

Assembler Instructions

the AR to the two-byte address that immediately follows the in-
struction opcode in memory. This mode is useful when addresses are
stored in table form.

System Memory

CPU Register Bank

2 l
> | - (:) S | U -
4 3
4 PC
5 PC
EA -

ARP

Instruction

2-byte

address

== =)

INDEXED INDIRECT ADDRESSING

Example: STMI R36, X30, OFFST Stores the contents of CPU register R36 and
R37 in memory, beginning with the location addressed by another
memory location which is itself addressed by CPU registers 2 and
3. Registers 2 and 3 contain th sum of the address in R30 plus the
offset specified by the label OFFST.

STACK INSTRUCTIONS

There is a large set of instructions that are available to push data onto and pop
data from stacks in the main memory of the HP-83/85. These stacks can be ad-
dressed by the instructions using direct or indirect addressing.

Assembler Instructions

PU CPU Instruction
Push
Format: PUB D/I DR +/- AR Push single byte

PUM D/I DR +/- AR Push multi-byte

Description: Pushes single byte or multi-byte onto stack. ©D/I indicates direct
or indirect addressing. +/- indicates stack pointer is incremented
(increasing stack) or decremented (decreasing stack) in memory.

Examples: PUBD R32, +R12
PUBI R32, -R46

PO CPU Instruction
Pop
Format: POBD/I DR +/- AR Pop single byte

POMD/I DR */- AR Pop multi-byte

Description: Pops single byte or multi-byte off stack. D/I indicates direct or
indirect addressing. +/- indicates stack pointer is incremented
(increasing stack) or decremented (decreasing stack) in memory.

STACK ADDRESSING

CPU registers R6 and R7 are permanently dedicated, and always contain the address
of the subroutine return stack. CPU registers R12 and R13 contain, by convention,
the address of the operational stack used during runtime by many of the internal
HP-85 routines. The user can, of course, address a stack from nearly any CPU
register pair.

Stacks may be increasing or decreasing. An increasing stack is one which is

filled in the direction of higher memory locations and from which data is removed
in the direction of lower memory locations. In a decreasing stack, data is

Assembler Instructions

pushed in the direction of lower memory locations, and taken off in the direction
of higher memory locations. To avoid confusion, it is best to address a particu-
lar stack using only instructions for an increasing stack or only instructions
for a decreasing stack, but not both.

For stack addressing, the stack pointer is contained in the AR. Multiple stacks
are handled by having multiple stack pointers within the CPU register space. A
stack is activated by setting ARP equal to the location of that stack's pointer.

For an increasing stack, the AR must point to the next available location on the
stack. For a decreasing stack, the AR points to the occupied location on top of
that stack.

Lower Memory
Locations

MR

2nd enlry

NN
ARP AR \\\\3:@‘3“'\\\&\\

———————— e >

4_——____—__—-—._

Stack Stack
Push Pop
Higher Locations

INCREASING STACK

Lower Memory
Locations

ARP AR

| —] |— Vw5577
WAL

———_—_——__.>
- —————

Stack Stack
Push Pop
Higher Locations

DECREASING STACK

4-17

Assembler Instructions

STACK DIRECT

In this addressing mode, the stack is presumed to contain data. Stores to the
stack (pushes) fill the stack. Loads from the stack (pops) empty the stack.

For a push onto an increasing stack, the AR points to the location where data is
to be stored. Following the store, the AR is incremented by the number of bytes
stored. For a pop operation from an increasing stack, the AR is first decre-
mented by the number of bytes to be popped off. The AR then points to the
location of the data to be removed from the stack.

For a pop from a decreasing stack, the AR points to the Tocation of the data to
be removed. Following the removal, the AR is incremented by the number of bytes
moved. For a push operation onto a decreasing stack, the AR is first decremented
by the number of bytes to be stored on the stack. Then the data is pushed onto
the stack.

STACK INDIRECT

In this addressing mode, the stack is presumed to contain an ordered list of
addresses. These addresses point to the location from which data is read by
pops or to the location into which data is stored by pushes.

For a push onto an increasing stack, the AR points to the effective address.
After storing data in M(EA), the AR is incremented by two. For a pop instruction
from an increasing stack, the AR is first decremented by two in order to point to
the effective address. M(EA) is then loaded into the CPU register designated by
the DRP.

Assembler Instructions

INSTRUCTIONS FOR AN INCREASING STACK

An increasing stack is one which is pushed in the direction of higher addresses
(+) and popped in the direction of lower addresses (-).

D (Direct Mode)

Lower Memory
Locations

1st entry

2nd entry
ARP AR 3rd entry

A
|
|
|
|
|
|

!
|

Stack Stack
Push Pop

Higher Locations

1 (Indirect Mode)

2-byte

address

2-byte
ARP AR address

1st entry

———————————————_——_ e

2nd entry *

Stack Stack
Push Pop

Each entry can be one or more bytes

INCREASING STACK

4-19

Assembler Instructions

The instructions available for use with an increasing stack are:

PUBD DR, +AR Push byte direct with increment

PUMD DR, +AR Push multi-byte direct with increment
PUBI DR, AR Push byte indirect with increment

PUMI DR, +AR Push multi-byte indirect with increment
POBD DR, -AR Pop byte direct with decrement

POMD DR, -AR Pop multi-byte direct with decrement
POBI DR, -AR Pop byte indirect with decrement

POMI DR, -AR Pop multi-byte indirect with decrement

INSTRUCTIONS FOR A DECREASING STACK

A decreasing stack is one which is pushed in the direction of Tower addresses
(-) and popped in the direction of higher addresses (+).

D (Direct Mode)

Lower Memory
Locations

ARP AR

—_— _— 3rd entry

2nd entry

1st entry

A |
| |
i I
.
L

R

Stack Stack
Push Pop

Higher Locations

4-20

Assembler Instructions

I (Indirect Mode)

ARP AR
|
| — L —I —- 2-byte T I
address | :
2-byte l I
address : |
|
' |
' |
| |
l |
| [
| |
1st entry I |
| [
L
2nd entry : +
Stack Stack
Push Pop

Each entry can be one or more bytes

DECREASING STACK

The instructions available for use with a decreasing stack are:

PUBD DR, -AR Push byte direct with decrement

PUMD DR, -AR Push multi-byte direct with decrement
PUBI DR, -AR Push byte indirect with decrement

PUMI DR, -AR Push multi-byte indirect with decrement
POBD DR, *AR Pop byte direct with increment

POMD DR, +AR Pop multi-byte direct with increment
POBI DR, *+AR Pop byte indirect with increment

POMI DR, +AR Pop multi-byte indirect with increment

4-21

Assembler Instructions

ARITHMETIC AND LOGICAL INSTRUCTIONS

The arithmetic and logical instructions consist of add, subtract, compare, logi-
cal AND and logical OR instructions.

AD
Add

Format:

Operation:

Description:

Examples:

ANM
Logical AND

Format:

Operation:

Description:

Examples:

~ ADM [D] DR, operand

CPU Instruction

Add byte
Add multi-byte

ADB [D] DR, operand

DR < DR + operand

Add single or multi-byte. The contents of the effective address
determined by the addressing mode are added to the DR. If DCM=1,
BCD addition is performed; otherwise, binary addition is performed.
The result is stored in the data register.

ADB R40, R50
ADMD R30,=LABEL

CPU Instruction

ANM [D] DR, operand
DR <« DR - operand

The DR is loaded with the logical AND of itself and the contents
of the effective address determined by the addressing mode used.
This instruction is multi-byte only.

ANM R40, R50
ANMD R32,=LABEL

4-22

Assembler Instructions

CM CPU Instruction
Compare ,
Format: CMB [D] DR, operand Compare byte

CMM [D] DR, operand Compare multi-byte
Operation: DR + ten's complement of operand if BCD mode set

DR + two's complement of operand if binary mode set

Description: Compares operand with data register(s). The contents of the effec-
tive address determined by the operand and the addressing mode are
subtracted from DR. BCD subtraction is performed if DCM=1; other-
wise a binary subtraction is performed. The result is used to
affect CPU status indicators and is not stored; DR is not affected.

Examples: CMB R24,=377
CMM R22, R32
OR CPU Instruction

Logical OR (Inclusive)

Format: ORB DR, AR Inclusive OR (single byte)
ORM DR, AR Inclusive OR (multi-byte)

Operation: DR <« DR v AR

Description: Contents of DR are replaced with inclusive OR of DR and AR. CY and
OVF are cleared.

Examples: ORB R21, R4l
ORM R40, R70

4-23

Assembler Instructions

SB

Subtract

Format:

Operation:

Description:

Example:

XR

CPU Instruction

SBB [D] DR, operand Subtract byte
SBM [D] DR, operand Subtract multi-byte

DR <« DR + ten's complement of operand if BCD mode
DR « DR + two's complement of operand if binary mode

The contents of the effective address determined by the addressing
mode and the operand are subtracted from the contents of the DR.
BCD subtraction is performed if DCM=1; otherwise binary subtraction
is performed. The result is stored in DR. CY is set if the result
is positive, cleared if the result is negative.

SBM R26,=177, O

CPU Instruction

Logical OR (Exclusive)

Format:

Operation:

Description:

Example:

XRB DR, AR Exclusive OR (single byte)
XRM DR, AR Exclusive OR (multi-byte)
DR+« DR ® AR

Contents of DR are replaced with the exclusive OR of DR and AR.
CY and OVF are cleared.

XRM R40, R50

4-24

Assembler Instructions

SHIFT INSTRUCTIONS

Al11 shift instructions can be BCD or binary. The shift instructions consist of
logical left, logical right, extended left and extended right instructions; all
are available in single byte or multi-byte modes.

EL

CPU Instruction

Extended Left Shift

Format:

Description:

ELB DR Extended Teft shift byte
ELM DR Extended left shift multi-byte

Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted left one bit position. Carry flag CY is loaded
from MSB. LSB is loaded from CY. OVF is set if the shift causes
a sign change.

CPU Register Bank
(1-8 bytes)

oR [T TTTTT T =—[]er

cYy |:|<-—— <’

Boundary

4-25

Assembler Instructions
BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are

shifted left one digit position (i.e., four bits) through the E
register. CY is cleared.

CPU Register Bank

(1-8 bytes)
on - 1, ~—[e
/ [| i1t
‘\
\\\
\\\
\\\
\\\\\
)
E - l I(
1 1 I
|
Boundary

4-26

ER

Assembler Instructions

CPU Instruction

Extended Right Shift

Format:

Description:

Example:

ERB DR Extended right shift byte
ERM DR Extended right shift multi-byte

Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted right one bit position. For multi-byte shifts,
the shift proceeds from DR to the next lower boundary. Carry flag
CY is loaded from LSB. MSB is loaded from CY.

CPU Register Bank

Boundary (-8 by_tf:.)_

AT —= e

cyY D —_— [| --' bR

BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are
shifted right one digit position (i.e., four bits) through the four-
bit E register. CY is cleared.

CPU Register Bank
(1-8 bytes)

! [WO T T N ||||

-~

o — o

Notice that a multi-byte right shift instruction, unlike other
multi-byte instructions, proceeds from the DR to the preceding
(i.e., lower-numbered) boundary.

ERM R47 Shifts all eight bytes of R40 - R47 right.

4-27

Assembler Instructions

LR

CPU Instruction

Logical Right Shift

Format:

Description:

LRB DR Logical right shift byte
LRM DR Logical right shift multi-byte

Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted right one bit position, and the MSB is cleared.
For multi-byte shifts, the shift proceeds from DR to the next Tower
boundary. Carry flag CY is loaded from LSB.

CPU Register Bank
Boundary -8 bytes)

ST — O

P

o — [[[[T[[[]-"on

BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are
shifted right one digit position (i.e., four bits), and the most
significant digit is cleared. For multi-byte shifts, the shift
proceeds from DR to the next lower boundary. The least signifi-
cant digit is shifted into the four-bit E register.

CPU Register Bank

Boundary (1-8 bytes)
- — e
' 1 i 1 i 1 1
N
\\\
\\\
\\\\
\\\\
]
0000 ——» | | -~" DR
1 L 1. 1] 1

Notice that a multi-byte right shift instruction, unlike other
multi-byte instructions, proceeds from the DR to the preceding
(i.e., lower-numbered) boundary.

4-28

Example:

LL

Assembler Instructions

LRM R54 Shifts contents of R54, R53, R52, R51, and R50 right.

CPU Instruction

Logical Left Shift

Format:

Description:

LLB DR Logical left shift byte
LLM DR Logical left shift multi-byte

Binary Mode. 1In binary mode, the contents of DR are shifted left
one bit position, and the LSB is cleared. The bit shifted out of
MSB is saved in CY. OVF is set if the shift causes a sign change.

CPU Register Bank

(1-8 bytes)
on =TT T[T]]=~—s¢
\\\\\
T ™\
cY D e S 4’/
Boundary

BCD Mode. 1In BCD mode, the contents of DR are shifted left one
digit position (i.e., four bits), and the least significant digit
is cleared. The digit shifted out of the most significant digit
position is saved in the E register. CY is cleared.
CPU Register Bank
(1-8 bytes)
| L | ~——— 0000

DR —‘l
4 L)

)

L]~ -
SRR SRR ——

Boundary

4-29

Assembler Instructions

Example: LLM R45 Shifts contents of R45, R46, and R47 left one bit posi-
tion through CY (in binary mode) or left one digit position through
E (in BCD mode).

4-30

Assembler Instructions

REGISTER INCREMENT AND DECREMENT INSTRUCTIONS

The increment and decrement instructions for the CPU registers can be BCD or

binary.

DC

Decrement

Format:

Operation:

Description:

Example:

CPU Instruction

DCB DR Decrement byte
DCM DR Decrement multi-byte

DR < DR + two's complement of 1 (binary mode)
DR « DR + ten's complement of 1 (BCD mode)

Binary Mode. In binary mode, DR is decremented by 1 (binary).
OVF is set if this operation causes a sign to change to a positive

value. CY is set by decrementing a non-zero number.

BCD Mode. In BCD mode, DR is decremented by 1 (decimal). OVF is
cleared. CY is set by decrementing a non-zero number.

DCB R12

4-31

Assembler Instructions

IC CPU Instruction
Increment
Format: ICB DR Increment byte

ICM DR Increment multi-byte

Operation: DR « DR + 1]
Description: Binary Mode. 1In binary mode, DR is incremented in binary by 1.
OVF is set if this operation causes a sign change to a negative

value.

BCD Mode. In BCD mode, DR is incremented in decimal by 1. OVF is
cleared.

Example: ICM R40

4-32

Assembler Instructions

COMPLEMENT INSTRUCTIONS

The complement instructions can be BCD or binary.
NC CPU Instruction
Nine's (Or One's) Complement

Format: NCB DR Nine's (or one's) complement byte
NCM DR Nine's (or one's) complement multi-byte

Operation: DR < DR

Description: Binary Mode. In binary mode, the one's complement of the contents
of DR replace the contents of DR. CY and OVF are cleared.

BCD Mode. In BCD mode, the nine's complement of the contents of
DR replace the contents of DR. CY and OVF are cleared.

Example: NCB R30

4-33

Assembler Instructions

TC

CPU Instruction

Ten's (Or Two's) Complement

Format:

Operation:

Description:

Example:

TCB DR Ten's (or two's) complement byte
TCM DR Ten's (or two's) complement multi-byte
DR« DR + 1

Binary Mode. In binary mode, the two's complement of the contents
of DR replaces the contents of DR. CY is set if the contents of DR
were zero. OVF is set if contents of DR were 100...000.

BCD Mode. 1In BCD mode, the contents of DR are replaced with their
ten's complement. CY is set if the contents of DR were zero. OVF

is cleared.

TCM R50

4-34

Assembler Instructions

TEST INSTRUCTION

The test instruction can check the status of single-byte or multi-byte CPU

registers.

I

Test

Format:

Description:

Example:

CPU Instruction

TSB DR Test byte

TSM DR Test multi-byte

The contents of DR are tested and condition flags are set accord-
ingly. CY and OVF are cleared.

TSM R36

REGISTER CLEAR INSTRUCTION

The clear instruction permits the clearing of any byte or of any multi-byte por-
tion of the CPU register bank.

CL

Clear

Format:

Operation:

Description:

Example:

CPU Instruction

CLB DR Clear byte
CLM DR Clear multi-byte
DR+« 0

DR is cleared. CY and OVF are cleared.

CLB R47

4-35

Assembler Instructions

SUBROUTINE JUMP INSTRUCTION

The subroutine jump instruction is available in the literal direct or the indexed
addressing mode.

JSB

CPU Instruction

Jump to Subroutine

Format:

Operation:

Description:

Examplies:

JSB = label Jump subroutine literal direct
JSB XR, label Jump subroutine indexed

Literal Direct. M(SP) « PC+3, SP <« SP+2, PC <« M(PC+1)

Indexed. M(SPj <« PC+3, SP « SP+2, PC « AR + M(PC+1)

The PC is saved in the memory location addressed by the R6 stack
pointer. Program control is then transferred to the location de-
fined by the label. In indexed addressing, control is transferred
to the location defined by the two-byte contents of the address
register plus the label.

After a subroutine jump, the next RTN instruction executed causes
a return to the instruction after the JSB.

JSB = LOC1
JSB X32, LOC2

Note: Since an indexed subroutine jump (i.e., JSB XR, label) can
cause a jump to an unlabeled destination, the programmer must
ensure that the ARP and DRP are set to ensure proper operation at
the destination. See Handling of ARP and DRP During Assembly later
in this section.

4-36

Assembler Instructions

CONDITIONAL JUMP INSTRUCTION

The conditional jump instruction can alter execution based on 16 different con-
ditions in the CPU.

J CPU Instruction
Conditional Jump

Format: JMP label Unconditional jump
JNO label Jump on no overflow
JOD label Jump on odd
JEV label Jump on even
JPS label Jump on positive Takes overflow into
Sl Ry N
JZR label Jump on zero
JNZ label Jump on non-zero
JEZ label Jump on E zero
JEN label Jump on E non-zero
JCY label Jump on carry
JNC label Jump on no carry
JLZ label Jump on left digit zero
JLN Tabel Jump on left digit non-zero
JRZ label Jump on right digit zero
JRN label Jump on right digit non-zero

Description: This group of instructions gives the capability of branching as a
function of status conditions previously generated. The branching
capability uses relative addressing. If the status condition
interrogated is found to be true, then the relative branch to the
address of the label will be taken. Otherwise, the next instruc-
tions after the jump will be executed.

Each jump instruction is assembled into two bytes: An opcode, and
an offset in two's complement notation.

4-37

Assembler Instructions

A jump can cover 4008 destinations from 2008 before the next in-
struction to]778 after the next instruction. The address to which
the jump is made is the sum of the address of the jump instruction
plus the offset plus two.

Example: JMP INITAL When assembled, this instruction would appear as
shown below.

200

375 n -—- Offset = -3

376 n+ 1 JMP Offset = -2

377 n + 2 Offset Offset = -1 (Current byte)
0 n+3--- Offset = 0 (Next byte)
1 n+4 --—- Offset = +1
2 n+5--- Offset = +2

177

4-38

Assembler Instructions

ARP AND DRP LOAD INSTRUCTIONS

Two instructions are available for loading the address register pointer or the
data register pointer. These instructions are not normally needed because the
assembler automatically generates necessary ARPs and DRPs where required.

ARP CPU Instruction
Load ARP

Format: ARP AR
Operation: ARP

Description: Sets address register pointer to point to address register.

Example: ARP R25 Sets ARP to point to R25.

DRP CPU Instruction
Load DRP

Format: DRP DR

Operation: DRP

Description: Sets data register pointer to point to data register.

Example: DRP R25 Sets DRP to R25.

4-39

Assembler Instructions

NOTE
The instructions to load DRP indirectly with RP and to load ARP
indirectly with RP are:

DRP 1
ARP 1

Thus, to avoid confusion, Rl is not allowed in either the DR or AR
fields. This means that CPU register R1 is for all practical pur-
poses inaccessible except by means of a multi-byte R@ operation or
when RP = 1 and the ARP or DRP is specified by R*. See Using R*
later in this section.

4-40

Assembler Instructions

OTHER INSTRUCTIONS

In addition to the instructions above, there are a few other instructions which
the programmer can use to manipulate quantities in the CPU and memory.

BCD CPU Instruction

Set Decimal Mode

Format: DCM

Operation: DCM <« 1

Description: Sets DCM to 1 so that arithmetic operations will be in binary-
coded decimal.

BIN CPU Instruction

Set Binary Mode

Format: BIN

Operation: DCM <« 0

Description: Sets DCM to zero so arithmetic operations performed will be in

binary.
CLE CPU Instruction
Clear E
Format: CLE

Operation: E<« 0

Description: A1l four bits of the E (extend) register are cleared to zero.

4-41

Assembler Instructions

DCE CPU Instruction
Decrement E

Format: DCE

Operation: E«E-1

Description: E (extend) register decremented by 1. This instruction is always
a binary operation, regardless of the setting of the DCM status

flag.
ICE CPU Instruction
Increment E
Format: ICE
Operation: E«<E+1

Description: E (extend) register incremented by 1. This instruction is always
a binary operation, regardless of the setting of the DCM status
flag.

4-42

Assembler Instructions

PAD CPU Instruction
Pop ARP, DRP and Status

Format: PAD
Operation: M(SP) -~ ARP, DRP and all status flags except E.

Description: Restore ARP, DRP and status (usually after a PAD instruction) by
popping them off the stack.

Stack pointer is decremented by 3, and all status flags except E
are altered by the contents of the three stack locations that are
read.

The first byte processed is read as LSB in bit 0, RDZ in bit 1, 7
in bit 2, LDZ in bit 6 and MSB in bit 7. The second byte is read
as DRP in bits 0-5, DCM status in bit 6, and overflow flags in
bit 7. The third byte is read as ARP in bits 0-5, carry flag

in bit 6, and overflow flag in bit 7.

Following a PAD instruction, the stack has been read as shown here:

sp —» [ove| cy . AR .
increasing OVF |DCM DRP
Addresses — = | ——
msB| oz | o | 0 I 0 I 7 IRDZlLSB
l 1 1 1 [1 1 1

7 6 5 4 3 2 1 0

4-43

Assembler Instructions

RTN CPU Instruction
Return From Subroutine

Format: RTN
Operation: SP « SP — 2, PC « M(SP)
Description: Subroutine return stack pointer is decremented by two. Then the

return address is read from the stack and written into the program
counter.

SAD CPU Instruction
Save ARP, DRP and Status

Format: SAD

Operation: M(SP) « ARP, and all status flags except E.

Description: Saves ARP, DRP and status (except E) in memory locations addressed
by SP (stack pointer).

Three bytes are pushed onto the stack. The first byte contains
ARP in bits 0-5, CY in bit 6, and the overflow flag in bit 7.
The second byte contains DRP in bits 0-5, DCM status in bit 6,
and the overflow flag in bit 7. The third byte contains LSB in
bit 0, RDZ in bit 1, Z in bit 2, LDZ in bit 6, and MSB in bit 7.

SP is then incremented by three. Status is not affected by this
operation.

4-44

Assembler Instructions

Following a SAD instruction, the stack contents are as shown here:

"Increasing
Addresses
OVF| CY ARP
1 1 1 i 1
OVF |DCM DRP
mse[iZ [o | o | o |z | Dz [LsB
Sp —>
[} L | 1 1 1 1

4-45

Assembler Instructions

USE OF R*

When entering source code, the programmer may substitute R* for the AR or DR in
any CPU instruction. R* causes the ARP or DRP to be loaded with the least sig-
nificant six bits of CPU register Rp. The effect is that the DR and AR are
specified by the contents of Rf.

Example: LDB R@, = 26 Loads RP with 26.

LDB R*, R30 Loads CPU register specified by Rp (i.e.,
R26 now) with contents of R30.

STB R40, R* Stores contents of R40 into register (R26
now) specified by RP.

ASSEMBLY OF CPU INSTRUCTIONS

When the address field of an instruction consists of a DR and an AR, each source
statement is usually assembled into three bytes of machine code. These bytes are
assembled in order as:

1. DRP: DRP set to point to DR.
2. ARP: ARP set to point to AR.
3. Opcode: Perform operation.

Thus, a stack push instruction such as PUBD would be assembled and appear as
shown here:

Byte No. Machine Code Source Code

000227 110 006 342 PUBD R10, -R6

When the address field of an instruction consists of a DR and a label, as in the
case of literal direct and literal indirect addressing (e.g., LDMI R32, = ADDRS),
each source statement is usually assembled into four bytes of machine code:

DRP: DRP set to point to DR.
Opcode: Perform operation.
Low-order byte of literal quantity.
High-order byte of literal quantity.

Pw NN -

4-46

Assembler Instructions

When the address field of an instruction consists of DR, AR, and a label, as in
the case of indexed direct and indexed indirect addressing (e.g., LDBI R36, X32,
TABLE), five bytes of machine code may be generated for each source statement:

DRP: DRP set to point to DR.
ARP: ARP set to point to AR.
Opcode: Perform operation.
Low-order byte of address.

A BwWw NN -

High-order byte of address.

HANDLING OF ARP AND DRP DURING ASSEMBLY

An optimizing feature of the Assembler ROM is the deletion of "unnecessary" ARP
and DRP instructions during assembly.

If an instruction is not labeled (i.e., there is not an entry in the label field)
and the ARP (and/or DRP) is already set to the correct value, the previously-set

ARP (and/or DRP) is not generated during assembly.

For example:

Byte No. Machine Code Source Code
000227 110 006 342 LABEL POBD R10, -R6
000232 342 POBD R10, -R6

In this example, both the ARP and the DRP are specified beginning with byte 227.
Since they are now correctly set for the next instruction, they are automatically
deleted when the second POBD R10, -R6 instruction is assembled. This results in
the machine code shown in byte 232.

Not all previously-set ARPs and DRPs are deleted during assembly. Instances
where a previously-set ARP and/or DRP will not be deleted include:

--Labeled instructions. Since a jump from anyplace in code may cause execution
to resume at the label, the first ARP and DRP are not deleted after an instruc-
tion that contains an entry in the label field.

4-47

Assembler Instructions

--Returns. After executing a JSB, then returning, the first ARP and DRP encoun-
tered are not deleted.

--PAD. Following a PAD instruction, the first ARP and DRP are not deleted.

USING R# i

When entering CPU instructions, the user may substitute R# in almost any instruc-
tion requiring an AR or DR. R# causes the ARP or DRP to be deleted from the
machine code, regardless of other conditions. For example:

Byte No. Machine Code Source Code

000265 240 LABEL LDB R#, R#

R# is normally used after labels, when the ARP and DRP are already set correctly.
By using R#, it is not necessary to squander time or bytes resetting ARP and DRP.

PSEUDO-INSTRUCTIONS

Pseudo-instructions are instructions to the assembler. Each may be entered by
typing a pseudo-opcode in the same field as the opcode for an instruction, fol-
lowed by any additional required operand.

Pseudo-instructions perform three main functions when encountered during assembly:
--Assembly control

--Data definition
--Conditional Assembly

4-48

Assembler Instructions

PSEUDO-INSTRUCTIONS FOR ASSEMBLY CONTROL

ABS Pseudo-Instruction
Absolute Program

Format: ABS 16
ABS 32
ABS ROM base address

Description: Declares an absolute program (i.e., with addresses that cannot be
relocated), for either a computer with 16K bytes of memory, a com-
puter with 32K bytes, or for a ROM beginning with the specified
base address. If ABS 16 or ABS 32 is declared, the instruction
must precede a NAM instruction.

FIN Pseudo-Instruction
Finish Program

Format: FIN

Description: Signifies the end of the source code. This pseudo-instruction is
required for assembly.

GLO Pseudo-Instruction
Declare Global File

Format: GLO
GLO file name

Description: If no file name, declares this source code to be a global file.
Otherwise, declares the global file to be used in the assembling of
the current source code. Comments are not allowed on the same line
as the GLO instruction, and the instruction must precede ABS and
NAM.

4-49

Assembler Instructions

LNK

Pseudo-Instruction

Link Files At Assembly

Format:

Description:

Example:

LST

List

Format:

Description:

LNK file name

Will load another file containing more source code and continue
assembling. Allows assembly of larger programs than would otherwise
be possible.

LNK SOURC2 When this instruction is encountered during assembly,
the assembler looks for the file SOURC2 on the current mass storage
device, loads the file, and continues assembling using the source
code from the file.

Pseudo-Instruction

LST

Causes the code to be Tisted on the current PRINTER IS device at
assembly time. If the column width of the printer is sufficient
(>46 characters) the listing will contain both the object and
source code; otherwise, only the object code will be listed.

An address that is undefined when its label is encountered will be

printed in object code as 326, 336, or 377, depending upon whether
it is a DEF, a relative jump, or a GT0 statement.

4-50

NAM

Name Program

Format:

Description:

Example:

ORG

Origin

Format:

Description:

UNL

Unlist

Format:

Description:

Assembler Instructions

Pseudo-Instruction

NAM unquoted string

Sets up the PCB (Program Control Block) for a binary program.
Should be preceded only by GLO, ABS, LST, UNL, DAD, EQU, or com-

ments. Illegal when ABS ROM has been declared.

NAM KEYHIT Names a binary program KEYHIT and sets up the 328-byte

program control block for that program.

Pseudo-Instruction

ORG address

Specifies a base address which is added to all following defined
addresses (DAD's).
files.

This pseudo-instruction is most useful in global

Pseudo-Instruction

UNL

Turns off the list feature which was turned on by the LST pseudo-

instruction. After an UNL, code is not listed during assembly.

4-51

Assembler Instructions

PSEUDO-INSTRUCTIONS FOR DATA DEFINITION

ASC
ASCII

Format:

Description:

Example:

ASP

Pseudo-Instruction

ASC numeric value, unquoted string
ASC quoted string

Inserts into the object code the ASCII code for the number of char-
acters specified of the unquoted string. Inserts the entire quoted
string.

ASC 3, FTOC Inserts the ASCII code for FTO.

ASC 4, FTOC Inserts the ASCII code for FTOC.
ASC "LOCATION" Inserts the ASCII code for LOCATION.

Pseudo-Instruction

ASCII With Parity

Format:

Description:

ASP numeric value, unquoted string
ASP quoted string

Same as ASC except that the parity bit (MSB) of the string's final
character is set. (During operation, the HP-83/85 system determines
the end of an ASCII string in some system tables by checking to see
if the character's parity bit is set. When the bit is found set,
the system assumes the next character begins a new string or entry
in the table.)

4-52

Assembler Instructions

BSZ Pseudo-Instruction
Bytes To Zero

Format: BSZ numeric value

Description: Inserts into the object code the octal number of bytes of zeros
specified by the numeric value.

Example: BSZ 30 Fills 308 bytes with zeros.

BYT Pseudo-Instruction
Bytes To Values

Format: BYT numeric value [,numeric value...]

Description: Inserts literal values into the object code.

Examples: BYT 377 Inserts octal 377 (i.e., all ones) into object code.
BYT 20,55C Inserts octal 20 into this byte of object code and
BCD 55 into next byte.

DAD Pseudo-Instruction

Direct Address

Format: Label DAD address

Description: Assigns either an absolute address or a constant to a label. DAD
and EQU are similar; DAD is usually used for addresses, while EQU
is used for values other than addresses. ORG affects only DAD's.

Example: INTORL DAD 56343 Assigns absolute address 56343 to the label
INTORL,

4-53

Assembler Instructions

DEF Pseudo-Instruction
Define Label Address

Format: DEF Tabel

Description: Inserts the two-byte address associated with the label.

Example: DEF RUNTIM Inserts two-byte address of the label RUNTIM.

EQU Pseudo-Instruction
Equals

Format: Label EQU numeric value

Description: Assigns either an absolute address or a constant to a label. DAD
and EQU are similar; DAD is usually used for addresses, while EQU
is used for values other than addresses. ORG affects only DAD's.

4-54

GTO
Go To

Format:

Description:

Example:

VAL

Value

Format:

Description:

Example:

Assembler Instructions

Pseudo-Instruction

GTO label

Generates four bytes of object code which load the program counter
(CPU registers 4 and 5) with the address minus one (i.e., ADR-1) of
the label. The label must be for an absolute address.

The CPU relative jump instructions (JRZ, JNO, etc.) can cause jumps
of from]778 to —2008 memory locations. The GTO pseudo-instruction
is useful for jumping beyond the range of relative jumps.

WARNING
The GTO pseudo-instruction is primarily for use in
ROMs. It should not be used in a binary program
unless that program has been declared an absolute
program.

GTO INTORL

Pseudo-Instruction

VAL label

Inserts the one-byte literal octal value associated with the label.

PPROM# EQU 360
VAL PPROM# Inserts the one-byte literal octal value (360) of the
Tabel PPROM# into the object code.

4-55

Assembler Instructions

PSEUDO-INSTRUCTIONS FOR CONDITIONAL ASSEMBLY

This set of pseudo-instructions permits the user to control assembly by means of

conditional assembly flags. A conditional assembly flag has the same constraints
as a label--it can be no more than six characters in length, and the first char-

acter cannot be a digit.

A conditional assembly flag is treated the same as a label by the HP-83/85 sys-
tem. (For example, an assembly flag can be located by a label search.) For this

reason, a conditional assembly flag name should be unique, and should not dupli-
cate a label.

AIF Pseudo-Instruction
Assemble If Flag True

Format: AIF assembly flag name

Description: Tests the specified conditional assembly flag and, if true, con-
tinues to assemble the following code. If the flag tests false,
the source code after the flag is treated as if it were a series
of comments until an EIF instruction is found.

Example: AIF CYCLE Tests assembly flag CYCLE.

CLR Pseudo-Instruction
Clear Flag

Format: CLR flag name

Description: Clears the specified conditional assembly flag to the false state.

Example: CLR CYCLE Clears assembly flag CYCLE.

4-56

EIF

Assembler Instructions

Pseudo-Instruction

End Of Conditional Assembly

Format:

Description:

SET
Set Flag

Format:

Description:

Example:

EIF
Terminates any conditional assembly in process. Only one condi-
tional assembly can be handled at a time. If a second one is

encountered while the first is still active, the second will
override the first,

Pseudo-Instruction

SET flag name

Sets the specified conditional assembly flag to the true state.

SET CYCLE Sets conditional assembly flag CYCLE.

4-57

AppPenDIX C

ASSEMBLER INSTRUCTION SET

On the following pages is a Tist of all CPU instructions available on the
Assembler ROM.

LEGEND

DR Data register. Can be register number (e.g., R32), R* or R#.

AR Address register. Can be register number (e.g., R32), R* or
R#.

Literal Literal value, up to 108 bytes in length. Can be BCD constant
(e.g., 99C), octal constant (e.g., 12), or decimal constant
(e.g., 20D). Can also be specified by a label, where the
Titeral quantity is a one- or two-byte value or address
assigned to the label.

Label Address of 1iteral quantity. Label name must begin with an
alphabetic character, can use any combination of alphanumeric
characters, and can be 1-6 characters in length.

Clock Cycle 1.6 usec.

B Number of bytes.

T Add one clock cycle if true (i.e., the jump occurs).

R(x) CPU register addressed by (x).

M(x) Memory location addressed by (x). (x) must be a 16-bit
address.

PC Program Counter. CPU registers R4 and R5. Used to address

the instruction being executed.

Assembler Instruction Set

SP

EA

ADR

JIF

Subroutine Stack Pointer. CPU registers R6 and R7. Used to
point to the next available location on the subroutine return
address stack.

Effective Address. The location from which data is read for
load-type instructions or the location where data is placed
for store-type instructions.

Address. The two-byte quantity directly following an instruc-
tion that uses the literal direct, literal indirect, index
direct or index indirect addressing mode. This quantity is
always an address.

Literal value.

Is transferred to.

Contents of.

Complement (e.g., x is complement of x). This is one's com-
plement if DCM=0 and nine's complement if DCM=1.

Logical AND.

Inclusive OR.
Exclusive OR.

Jump if.

Status bit is set.
Status bit is cleared.

Status bit is affected.

C-2

Assembler Instruction Set

- Status bit is not affected.

Y This option is available to this instruction.

The complete 1ist of CPU instructions begins on the next page.

C-3

Assembler Instruction Set

Status
Binary/
Instruction Description Addressing | OpCode | Clock Operation DCM=@ DCM=1 Bcp
format Mode Cycles RDZ e, puet e, | Option
LSB MSB LDZ Z ODCM E CY OVF E CY OVF
ADB DR, AR]Add byte Reg. imm. 302 5 DR<DR+AR X X X X - - X X 0 Y
ADB DR, = Add byte Lit. imm. 312 5 DR<DR+M(PC+1 X X X X - - X X 0 Y
Titeral
ADBD DR, AR |Add byte Reg. dir. 332 6 DR«DR+M(AR) X X X X - <« X X 0 Y
ADBD DR, = |Add byte Lit. dir. 322 5 DR<DR+M{ADR) X X X X - - X X 0 Y
label
ADM DR, AR |Add multi- Reg. imm. 303 4+B DR«DR+AR X. X X X - - X X 0 Y
byte
ADM DR, = Add multi- Lit. imm. 313 4+8 DR<DR+M(PC+1) X X X X - - X X 0 Y
Titeral byte
ADMD DR, AR |Add multi- Reg. dir. 333 5+B DR<DR+M{AR) X X X X - - X X 0 Y
byte
ADMD DR, = |Add multi- Lit. dir. 323 448 DR«DR+M(ADR) X X X X - - X X 0 Y
label byte
ANM DR, AR |Logical AND Reg. imm. 307 448 DR<DR-AR X X X X - -0 0 0
(multi-byte)
ANM DR, = Logical AND Lit. imm. 317 4+B DR<DR*M(PC+1) X X X X - -0 0 0
Titeral |(multi-byte)
ANMD DR, AR |Logical AND Reg. Dir. 337 5+B DR<DR-M(AR) X X X X - -0 0 0
(multi-byte)
ANMD DR, = {JLogical AND Lit. dir 327 5+B DR<DR°M{ADR) X X X X - -0 0 0
literal [(multi-byte)
ARP AR Load ARP 000-077] 2 ARP+n - - e e e e - -
(#001)
ARP * Load ARP with 001 3 ARP<R@ - - - - - - - - -
contents
of R@
BCD Set BCD mode 231 4 DCM«1 - - - - 1 - - - -
WBIN Set binary 230 4 DCM<0 - - - - 0 - - - -
mode
CLB DR Clear byte Reg. imm. 222 5 DR<0 X X X X - -0 0 0
CLM DR Clear multi- |Reg. imm. 223 4+B DR<0 X X X X - -0 0 0
byte
CLE Clear E 235 2 E<0 - - -« - - 0 - - -
CMB DR, AR |compare byte |Reg. imm. 300 5 DR+AR+1 X X X X - - X X 0 Y

C-4

Assembler Instruction Set

Status
Binary/
Instruction | Description | Addressing | OpCode | Clock Operation DCM=¢ DCM=1 BCD
Format Mode Cycles RDZ et rmns, et e, | Qption
LSB MSB LDZ Z DCM E CY OVF E CY OVF
CMB DR, = Compare byte | Lit. imm. 310 5 DRM{PC+1)+1 X X X X - - X X - X 0 Y
Titeral
CMBD DR, AR | Compare byte | Reg. dir. 330 6 DR (AR} +1 X X X %X - - X X - X 0 Y
CMBD DR, =]Compare byte | Lit. dir. 320 6 DR+M{ADR}+1 X X X X - - X X - X 0 Y
label
CMM DR, AR | Compare Reg. imm. 301 4+B DR+AR+1 X X X X - - X X - X 0 \
multi-byte
CMM DR, = Compare Lit. dimm. 311 4+B DR+M{PC+1)+1 X X X X - - X X - X 0 Y
literal |multi-byte
CMMD DR, AR | Compare Reg. dir. 331 5+B DR+M{AR}+1 X X X X - - X X - X 0 Y
multi-byte
CMMD DR, = | Compare Lit. dir. 321 548 DR+M{ADR}+1 X X X X - - X X - X 0 Y
label multi-byte
DCB DR Decrement Reg. imm. 212 5 DR+DR-1 X X X X - - X X - X 0 Y
byte
DCM DR Decrement Reg. imm. 213 448 OR<DR-1 X X X X - - X X - X 0 Y
mutti-byte
DCE Decrement E 233 2 E<E-1 - - - - - X - - X - -
DRP DR Load DRP 100-177 2 DRPn - L T - - - -
(#101)
ORP 1 Load DRP with 101 3 DRP<R@ - - - - - - - - - - -
contents
of R@
ELB DR Extended left] Reg. imm. 200 5 Circulate DR X X X X - - X X X 0 0 Y
byte left once
ELM DR Extended Teft| Reg. imm. 201 4+8 Circulate DR X X X X - - X X X0 0 Y
multi-byte left once
ERB DR Extended Reg. imm. 202 5 Circulate DR X X X X - - X 0 X 0 0 Y
right byte right once
ERM DR Extended Reg. imm. 203 448 Circulate DR X X X X - - X 0 X0 0 Y
right right once
multi-byte
ICB DR Increment Reg. imm. 210 5 DR+DR+1 X X X X - - X X - X 0 Y
byte
ICM DR Increment Reg. imm. 211 448 DR+DR+1 X X X X - - X X - X 0 Y
multi-byte

C-5

Assembler Instruction Set

Status
Binary/
Instruction Description Addressing [OpCode | Clock Operation DCM=p DCM=1 8CD
format Mode Cycles RDZ e, e, | Option
LSB MSB LDZ Z OCM E CY OVF E CY OVF

ICE Increment E 234 2 E«E+1 - L e X -

JCY label Jump on carry 373 447 JIF<CY=1 - - - - - - - - -

JEN label Jump on E 370 a+T JIF E#0000 - L - -
non-zero

JEV label Jump on even 363 44T JIF LSB=0 - - - - - - - - -

JEZ label Jump on E 371 44T JIF E=0000 - - - - - - - - -
zero

JLN label Jump on left 375 44T JIF LDZ#1 - - - - - - - - -
digit
non-zero

JLZ label Jump on left 374 44T JIF LDZ=1 - - - - e - - - -

digit zero

JMP Tabel Unconditional 360 44T Jump always - - - - - - . - -
Jump

JNC label Jump on no 372 44T JIF CY=0 - - - - e - . - -
carry

JNG label Jump on 364 44T JIF MSB#OVF - - - - - - - - -
negative

JNO 1abel Jump on no 361 44T JIF OVF=0 - - - - = - - - -
overflow

JINZ label Jump on 366 44T JIF Z#1 - - - - - - - - -
non-zero

JOD label Jump on odd 362 44T JIF LSB=1 - R - -

JPS label Jump on 365 44T JIF MSB=0VF - - -« - - - - - -
positive

JRN labetl Jump on right 377 44T JIF RDZ#1 - - - - - - - - -
digit
non-zero

JRZ label Jump on right 376 44T JIF RDZ=1 - - - = - - - - -

digit zereo

JSB=1label Jump Literal 316 9 Jump - - - - - - - - -
subroutine] direct subroutine|

JSB XR, Jump Indexed 306 11 Rump - - - - e e e e -

label subroutine subroutine
indexed

C-6

Assembler Instruction Set

Status
Binary/
Instruction Description Addressing { OpCode | Clock Operation DCM=@ DCM=1 BCD
Format Mode Cycles RDZ e, et e, | Option

LSB MSB LDZ Z DCM E CY OVF E CY OVF

JZR label Jump on zero 367 447 Jd1F Z=1 - - - - - - - - - - -

LDB DR, AR | Load byte Reg. imm. 240 5 DR<AR X X X X - -0 0 -0 0

LDB DR, = Load byte Lit. imm. 250 5 DR<M(PC+1} X X X X - -0 0 -0 1]
literal

LDBD DR, AR | Load byte Reg. dir. 244 6 DRM(AR) X X X X - -0 0 -0 0

LDBD DR, = | Load byte Lit, dir. 260 6 DR<M({ADR) X X X X - -0 0 -0 0
label

LDBD DR, Load byte Index dir. 264 8 DR«M(ADR+AR) X X X X - -0 0o -0 [
XAR,
label

LDBI DR, AR] Load byte Reg-indir. 254 8 DR<M(M(AR}) X X X X - -0 0 -0 0

LDBI DR, = | Load byte Lit. indir. 270 8 DR<«M(M{ADR)) X X X X - -0 0 -0 0
label

LDBI DR, Load byte Index indir] 274 10 DReM(M(ADR+ X X X x - -0 0 -0 0
XAR, AR))
label

LDM DR, AR | Load Reg. imm. 241 4+B DR<AR X X X X - -0 0 -0 0

multi-byte
LDM DR, = Load Lit. imm. 251 448 DR<M{PC+1) X X X X - -0 0 -0 0

literal |multi-byte

LDMD DR, AR| Load Reg. dir. 245 5+B DR<M(AR) X X X X - -0 0o -0 o]
multi-byte
LDMD DR, = | Load Lit. dir. 261 5+B DR<M(ADR) X X x x - -0 o -0 0

label multi-byte

LDMD DR, Load Index dir. 265 74B DRM(ADR+AR) X X X X - -0 6 -0 0
XAR, multi-byte
label
LDMI DR, AR| Load Reg. indir.| 255 748 | DReM(M(AR)) X X X X - -0 0 -0 0
multi-byte
LDMI DR, = | Load Ltit. indir.] 271 74B DR+M{M(ADR)) X X X X - -0 0o -0 0

label multi-byte

LDMI DR, Load Index indiv] 275 948 DReM(M(ADR+ X X X X - -0 0 -0 0
XAR, multi-byte AR))
label

Assembler Instruction Set

Status
Binary/
Instruction Description Addressing | OpCode | Clock Operation DCM=p DCM=1 BCP
Format Mode Cycles RDZ — e, e, Option
LSB MS8 LDZ Z DCM E CY OVF E CY OVF
LLB DR Logical left |Reg. imm. 204 5 Logical Teft X X X X - - X 0 0 Y
byte shift DR
LLM DR Logical left |Reg. imm. 205 44B Logical left X X X X - - X 0 0 Y
multi-byte shift DR
LRB DR Logical right | Reg. imm. 206 5 Logical righy X X X X - - X 0 0 Y
byte shift DR
LRM DR Logical right | Re. imm. 207 4+B Logical right X X X X - - X 0 0 Y
multi-byte shift DR
NCB DR Nine's Reg. imm. 216 5 DRDR X X X X - - X X 0 Y
(or one's)
complement
byte
NCM DR Nine's Reg. imm. 217 448 DRDR X XX x - - X X 0 Y
{or one's)
complement
multi-byte
ORB DR, AR |Or byte Reg. imm. 224 5 DRDRAR X X X X - -0 0 0
inclusive
ORM BR, AR |Or multi-byte| Reg. imm. 225 4+B DR-DR~AR X X X X - -0 0 0
inclusive
PAD Pop ARP, DRP 237 8 Status«M(SP) X X X X X - X X X
and status
from stack
POBD DR,+AR] Pop byte with] Stk. dir. 340 6 DR<M(AR), X X X X - -0 0 0
post- AR-AR+1
increment
POBD DR,-AR | Pop byte with| Stk. dir. 342 6 DR<M(AR), X X X X - -0 0 0
with AR+AR-1
pre-decrement
POBI DR,+AR | Pop byte with| Stk. indir.} 350 8 DReM(M(AR)),] X X Xx X - -0 0 0
post- AR<AR+2
increment
POBI DR,-AR| Pop byte with] Stk. indir.| 352 8 DR<M(M{AR)), X X X X - -0 0 0
pre-decrement AR<AR-2
POMD DR,+AR | Pop multi- Stk. dir. 341 54B DR<M(AR), X X X X - -0 0 0
byte with AReAR+HM
post-
increment

Assembler Instruction Set

Status
Binary/
Instruction | Description Addressing [OpCode | Clock Operation DCM=0 DCM=1 BCP
Format Mode Cycles RDZ e e, g e, | OptiON
LSB MSB LDZ Z DCM E CY OVF E CY OVF
POMD DR,-AR | Pop multi- Stk. dir. 343 5+8 DR«M(AR), X X X X - -0 0 -0 0
byte with AR<AR-M
pre-decrement
POMI DR,+AR | Pop multi- Stk. indir.] 351 7+B |DReM(M(AR)),] X X X X - -0 0 -0 O
byte with AReAR+2
post-
increment
POMI DR,-AR § Pop multi- Stk. indir.] 383 748 DReM(M(AR)), X X X X - -0 0o -0 0
byte with AR-AR-2
pre-decrement
PUBD DR,+AR | Push byte Stk. dir. 344 6 M(AR)<DR, X X X X - -0 o -0 0
with post- AR<AR+1
increment
PUBD DR,-AR | Push byte Stk. dir. 346 6 AR<AR-1, X X X X - -0 0 -0 0
with pre- M(AR)<«DR
decrement
PUBI DR,+AR | Push byte Stk. indir.} 354 8 M(M(AR) }«DR, X X X X - -0 0 -0 0
with post- AR<AR+2
increment
PUBI DR,-AR | Push byte Stk. indir.] 356 8 AR-AR-2, X X X X - -0 0 -0 0
with pre- M(M(AR) }<DR
decrement
PUMD DR,+AR | Push multi- Stk. dir. 345 5+8 M(AR)<DR, X X X x - -0 0 -0 0
byte with AR<AR+M
post-
increment
PUMD DR,-AR | Push multi- Stk. dir. 347 5+B AR+AR-M, X X X X - -0 0 -0 0
byte with M{AR)<«DR
pre-decrement
PUMI DR,+AR | Push multi- Stk. indir.| 355 7+B M(M(AR) }+<DR, X X X X - -0 0o -0 0
byte with AR+AR+2
post-
increment
PUMI DR,-AR | Push multi- Stk. indir.j 357 748 AR<AR-2, X X X X - -0 0 -0 0
byte with M(M(AR))<DR
pre-decrement
RTN Subroutine 236 5 SP<SpP-2, - - = = - - - - - - -
return PCM(SP)
SAD Save ARP, DRP 232 8 M(SP)«Status - - - - - - - - - - -
and status on
stack

C-9

Assembler Instruction Set

Status
Binary/
Descripti Addressin OpCode | Clock Operation DCM=Q DCM=1 BCD
I"slftt)rr‘:atgon seripLion Mode s P Cycles RDZ e e, e, | Opt 0N
' LSB MSB LBZ Z DCM E CY OVF E CY OVF
SBB DR, AR [Subtract byte} Reg. imm. 304 5 DR+OR+AR+1 X X X X - - X X - X "] ¥
SBB DR, = Subtract byte] Lit. imm. 314 5 DR<DR+M[PCHTY] X X X X - - X X - X 0 Y
literal +1
SBBD DR, AR fSubtract byte| Reg. dir. 334 6 DR-DR+M{ARTH| X X X X - < X X - X 0 Y
SBBD DR, = |Subtract byte| Lit. dir. 324 6 DR«DR+MTADR) X X X X - - X X - X 1] Y
label +1
SBM DR, AR |Subtract Reg. im. 305 4+B DR«DR+AR+1 X X X X - - X X - X 1} Y
multi-byte
SBM DR, = Subtract Lit. imm. 315 4+B DR<DR+M{BC+T§ X X X X - - X X - X 0 Y
literal [multi-byte +1
SBMD DR, AR |Subtract Reg. dir. 335 548 DR-DR+M{ARN1 X X X x - - X X - X 3] ¥
multi-byte
SBMD DR, = |Subtract Lit. dir. 325 548 DR<DR+M[ADR} X X X X - - X X - X 0 Y
literal |multi-byte +1
STB DR, AR |Store byte Reg. imm. 242 5 DR+AR X X X X - -0 o -0 0
STB DR, = Store byte Lit. imm. 252 5 DR+M(PC+1) X X X X - -0 0 -0 0
literal
STBD DR, AR |Store byte Reg. dir. 246 6 DR+*M(AR) X X X X - -0 0 -0 0
STBD DR, = [Store byte tit. dir. 262 6 DR-+M(ADR) X X X X -« -0 0 -0 0
label
STBD DR, Store byte Index dir. 266 8 DR*M(ADR+AR) X X X X - -0 0 -0 0
XAR,
label
STBI DR, AR | Store byte Reg. indir.} 256 8 DR+-M{M(AR)) X X X X - -0 0 -0 0
STBI DR, = [Store byte Lit. indir.| 272 8 DR+M(M(ADR)) X X X X - -0 0 -0 1]
tabel
STBI DR, Store byte Index indir] 276 10 DR»M{M(ADR+ X X X X - -0 0o -0 0
XAR, AR))
label
STM OR, AR | Store multi- | Reg. imm. 243 448 DR-+AR X X %X X - -0 o -0 0
byte
STM DR, = Store multi-] Lit, fmm. 253 4+B DR+M(PC+1) X X X X - -0 o -0 0
literal byte
STMD DR, AR | Store multi Reg. dir., 247 548 DR>M(AR}) X X X X - -0 0 -0 0
byte

Assembler Instruction Set

Status
Binary/
Instruction | Description | Addressing] OpCode | Clock Operation DCM=0 DCM=1 BCcD
Format Mode Cycles RDZ S,y | Option
LSB MSB LDZ Z DCM E CY OVF E CY OVF
STMD DR, = |Store multi- | Lit. dir. 263 548 DR-M{ADR) X X X X - -0 0o -0 0
label byte
STMD DR, Store multi- | Index dir, 267 7+8 DR-M(ADR+AR) X X X X - -0 0 -0 0
XAR, byte
label
STMI DR, AR | Store multi-]| Reg. indir.} 257 7+B DR+M(M{AR)) X X X X - -0 0o -0 0
byte
STMI DR, = |Store multi- | Lit. indir.] 273 7+8 DR-+M(M(ADR}) X X X X - -0 0 -0 0
label byte
STMI DR, Store multi- | Index indir] 277 9+B DR+M(M(ADR+ X X X X - -0 0o -0 1]
XAR, byte AR})
label
TCB DR Ten's (or Reg. imm. 214 5 DR+DR+1 ¥ X X X - -0 0 -0 0 Y
two's)
complement
byte
TCM DR Ten's (or Reg. imm. 215 448 DR<DR+1 X X X X - -0 0 -0 0 \
two's)
complement
multi-byte
TSB DR Test byte Reg. imm. 220 8 Test DR X X X X - - X X - X 0 Y
TSM DR Test multi- Reg. imm. 221 448 Test DR X X X X - - X X - X 0 Y
byte
XRB DR, AR | Or byte Reg. imm. 226 5 DR<DR @AR X X X X - -0 0o -0 0
exclusive
XRM DR, AR | Or multi-byte] Reg. imm. 227 448 DR<DR @ AR X X X X - -0 0 -0 1]
exclusive

The chart below shows how the CPU instructions appear when assembled

ApPENDIX D

ASSEMBLER INSTRUCTION CODING

language object code by the computer.

into machine

7 6 5 4 3 2 1 0
0 DRP/ #000001 Load with literal
ARP =000001 Load with R@
Logical/ .
1 0 0 0 0 Extended Right/lLeft M/8B
Decrement/
1 0 0 0 1 0 Increment M/B
Nine's Complement/
! 0 0 0 ! 1 Ten's Complement M/B
1 0 0 1 0 0 Clear/Test M/B
1 0 0 1 0 1 XOR/OR M/B
1 0 0 1 1 000 BIN
001 BCD
010 SAD
omn DCE
100 ICE
101 CLE
110 RTN
111 PAD
1 0 1 000 REG IMM Store/Load M/B
001 REG DIR
010 LIT IMM
011 REG IND
100 LIT DIR
101 INX DIR
110 LIT IND
111 INX IND
1 1 0 00 REG IMM 00 CMP M/B
01 LIT IMM 01 ADD
10 LIT DIR 10 SuB
11 REG DIR TT AND T
1 1 0 00 INX 11 JsB 0
01 LIT
IND/ PUSH/ ~ADR/
L L L 0 DIR POP +ADR M/B
1 1 1 1 000 JNO/ JMP
001 JEV/J0D
010 JPS/JNG
011 JZR/JNZ
100 JEZ/JEN
101 JCY/JNC
110 JLN/JLZ
111 JRN/JRZ
X/Y = 1/0

D-1

	CPU structure
	ARP and DRP
	CPU register bank
	Number representation
	Status indicators

	Assembler instructions
	Load/store
	Addressing modes
	Stack instructions
	Arithmetic and logical
	Shift instructions
	Register instructions
	Jump instructions
	ARP and DRP load
	Other instructions
	Use of R*
	Assembly of CPU instructions
	Pseudo-instructions

	Instruction set
	List of CPU instructions

	Instruction coding

