MICROPROCESSOR IMPLEMENTATION OF THE HP-IL PROTOCOL

GARY MUHONEN
MOUNTAILN COMPLTER, INC.

January 9, 1983

Abstract

This paper describes a design approach to implementing
the HP-IL protocol in a microprocessor. The software
makes use of state machines to follow the HP-IL state
diagrams provided by Hewlett-Packard, This approach

provides many advantages over conventional straight
line programming.

Hewlett Packard recently announced a new interface system
called HP-IL (Hewlett Packard Interface Loop). It is a
powerful two wire network that can connect up to 961
peripherals to a host computer via a daisy chain inter-
connection scheme. HP-IL 13 well suited for existing
parsonal computers, and the new wave of portable computers.
HP currently has HP-IL available for the Series 30
computers, HP75C, and the HP4LlC.

To make a peripheral work om the HP-IL, the designer
has several options. HP provides a parallel converter
(HPB21664A) that has the HP=-IL protocol implemented in it
with a parallel port as the interface to the designer's
product. Using the converter provides an easy solution
to the interface design, but hazs several limitations,
The cost of this unit may be excessive for some applica-
tions, and the complete protocol is not implemented in
the converter. Additionally, the parallel port may not
be what the designer needs.

Another approach to HP=-IL implementation is to design
the HP-IL protocol and desired peripheral together. This
can be done by using & microprocessor and its associated
hardware to accomplish the desired task. HP has provided
several items to make the design task easier. HP provides
a chip that contains a major portion of the low end HP-IL
protocol. This chip will interface directly with the
designer's microprocessor. Additionally HP sells the
documentation set that completely describes the HP-IL
protocal.

The HP-IL protocol is defined as a series of state diagrams
in the HP-IL reference specifiecation. Figure 1 shows one
of the diagrams. A state diagram is similar to a flow
chart, and each describes part of the entire HP-IL system.
This state diagram describes the auto addressing method
for HF-IL. The system is always in one and only one of
these states. On another diagram of the HP-IL protocol,
one and only one state will be active in that state diagram.
The system at any given point in time can be totally
described by listing which state each of the state diagrams
is in. The arrows show the direction and what needs to
happen for the state to change from one state to the next.
In this way the state diagrams are connected. For example,
a state on one diagram may change if the state of another
diagram changes. This approach to describing a system is
very elegant as it can describe a very complex system in
terms of many individual components.

PONS

EOEEE

Aalls ACTHS

ush 200408 (1N wa-ss

AACS

HES » STRS
-.\, NLP « STES f—\ .
APIS @ ZES - ACDS
Messages
auta addrasza MaA rest gula oddresa
auts gddress unesnfgurs NES next axtended 3scondary
auto extended primary HMP next myltiple primary
auta extended secondary ZES zero extended zecandary

aute muitizle primary

Interface States

guto address configured atate ACDS acceptor daota atate (from AH)
gubo oddress incremant stala {links ta SH) PONS power on stata (from PO)
guto address uncanfigured stabs (finka te R) STRS source tronsfer stots (from SH)

auts axtended configurad state (links ta L.T)
aute muitiple inerement atats {links ta 5H)
guts primary Inerement atote (links ta SH)
guto secondary increment sicte (linka to 5H)
auts wait for pimary stote (Gnka to R)

auto wait for secondary atate (finka to R)

Figure 1

Writing the code for a system described by state diagrams
can be difficult and tedious, because the diagrams are
interrelated. Conventional straight line coding will work,
but there are several pitfalls. Firgt the atate diagram
must be coaverted to flew charts, and since the diagrams
ara intertwined there is a high risk of missing some
details. Another approach is to write the software using
a atate machine approach, which is written directly from
the state diagram. Here, the software is writtea in pieces,
one for each state diagram. The actual device that i3 to
be made into a HP-IL peripheral would he desipgned in termsa
of a state diagram and it would interact with the other
state diagrams to pass data and control Lnformation.

In the actual microprocessor implementation, a state
table can be implemented. Each byte of the table can
represent the state of one state machine. As a machine
changes state it would update the byte in the state table
to its current state. [f one state machine needed to
chack the state of another state machine, it would look
in the table toc check itz state, In this way, each
machine 1ls independent, but can check the conditions of
its environment.

The zoftware's main core cowld consigt of a series of
subroutine calls to the variows state machines, and they
would each follow the iastructions of the state diagram.
I[f a state change or action was called for, it would do
it, and retura to the main core., The last subroutine
might be a device dependent routine that handleg the
specifics of what this particaelar device is to perform.

Thig implementation has several unique advantages over
conventlonal coding. The designer can look at the state
table apd eagily see what the entire state pf the system
is. This greatly accellerates debugging. Also, since
the system is modular, and broken into small segments,
changes to one section of code are not likely to
adversely sffect others.

This approach was recently used in designing the Mountain
Computer HP-IL Eprom Programmer. Debugging was straight-
forward and zimplified due to this zpproach. With future
HP=-IL products, eighty percent of the code will remain
the same, and only the device dependent sections will change.

APPENDIX

MICROPROCESSOR IMPLEMENTATION OF THE HP-IL PROTOCOL

GARY MUHONEN
MOUNTAIN COMPUTER, INC.

January 9, 1983

The following contains actual source code listings for part
of the HP-IL protocol implemented for the 2039 microprocessor.
Page A2 shows the main core of the program which starts with the
initialization, followed by calls to each of the state machines
in the system. The rest of the program are the state machine
subroutines and the device handling state machine.

Page A3 starts the listing for the auto address state machine
(See Figure 1 for state machine diagram). The diagram shows
nine states and the top six were implemented in this listing
(Auto Multiple addressing was not required for our application).
The subroutine starts by looking at the wvalue AA which indicates
what state this state machine is in. Then we jump to the proper
STATe® processing area.

Each state is ecoded into two sections, O and 1. For example
the AAUS state has label AAUSP and AAUS]1 im it. Normally the
program goes directly to the suffix label to check if conditions
are such that a change in state is required. If a change in state
is required, then the jump is made to the § suffix label. In
this area any initialization is done, and the state value (AA in
this case) is changed to reflect the new state,

Within each state, the arrows shown in the =state diagram
are checked to see if a change in state is reguired. For
example, if we are in the AAUS state we check to see if a AAD
commard has been received and that the acceptor handshake machine
iz in the ACDS state. If this is true the Auto Address Machine
moves to the AAIS state. TFollowing this procedure the entire
system is put together.

Al

AVOCET SYSTERS 2048 CROSS-4S3ENOLER -

EOURCE FILE YAME: EPROMIQ.AGM

g

0ok 5725
02 Fl

0203 1Z21C
g I
1207 W58
H208 7254
n2E SZTF
20 B2%

020F 5
a1 BELF
g Il o
02113 TIF
215 BEM
q2LT MZE
4219 BLol
AR 1Y

0ILT DMAT
WIIE e
030 DR
MI12 Caid
e TS

1125 e
Lr L
N2i9 Ch3Z
orr

N23C STED
e 0300
1230 C530
a1

ORE

0

VERSION 1.5

i
ghn - AUTD AZDRESE STATE MACHINE
i& STATES AUS, AWIE, SACS, A516, AHPS, ASECS

§{NP TO FROPER STATE

AhSH: WMDY
Y
0
181
182
JB3
104
125

i

sAALS STATE

H

(5ET BEFAULT

]

A4lSH: SEL
v
SEL
LI
W
CALL
LAt
RET

:IF 2ALLACOE

t0F G0, AC05
iIF SES.ACDE

r

4RUSL: CALL
M

AAUSLAs SALL
11
HCY
AL
(AL
41
v
ML
IAL
)

ApUTiR: RET

JRAIS BTATE

AL, ¥4
8. 901
RALE]
GA1GL
HACS]
&&I51
HNFE]
AECEL

ADORESEES

RE}

6. SLSADDEF
REL

A, AL RTROEF
R0, SREEL
WRFIL

R1, Raus

THEN A5

THEN RRLS
THEW 2515

ARLCE
haUSS
RASCE
AALSEE

A, r2

A, BAATHEE
#, B4l
4RI

A, R2

A, BRESHEK
#, B4ES

CE {00

Mountain

7 SET SECONEARY ADIR TO SEFAULT

i SET FRIMARY ADDRESS TO BEFAULT IN PIL

pEET AR=RAUG
$RETURM TO PREVENT RAU,ACDS CHECE AGAIN TO IMFINITE LOCP HERE

5 CHECY. FOR &CDS, CHD. Al

sJHP IF Ral

s CHECE FOR ACOS.RDY.VRLID ADOR
RRETURN. |F NOT

s CHECK FOR &RAD

wIHF [F ARD
1 CHECE FDR REG

gdRP [F RES

A2
Computer, Inc. Copyright 1982

AVOCET SYSTEMS 8048 CROSS-AGSCMELER - WVEREIOW L.3

SOURCE FILE MAWE: EPRORL.AGH

i
(ZET THPADR RY) = PMESG.ADR (STRIP mOM AGZRESS RITHI
¢ [HCR RMESS FOR M&h BERCRATION

a
1

N kA AAES0: WDV 4.R2 s SAVE ADDR TN RY

0274 STIF iRl A. ERDAMSE

4236 €3 SEL L

0237 AF How RT.H

178 D5 2l 81

033 1 N L § THCREMENT RMESS FOR Mest GENERATION
030 ¥ oy FLH D REET AA=RAIS

tIF AALLACTS THEM AALS
1 1F Wafi, DACE THEN AALS

1
NZIC DeAd ARISI: CALL SAUCK § CHECE. FOR A&, ACTS
Z3E SEAE NI AALSO sAMP [F TRUE
Tide FR i A.R2 CHECK FOR WAR, ROT CHECKINE FOR ROY
0241 3IE4 ANL A, BEADNSK
1247 DTAN L8 A, kapd
0297 FE4E L AATSIR TRETURN IF -Na&
qI47 BA22 e fel, 80 ; CHECE FOR DACS
0249 F oY G
s 5302 AML &, BDACE
0240 REAF EL s AACED0 4P IF WS
ME B3 BR[SIR: RET
sAALS STATE

s5ET REEISTER 4 OF PIL CHIP TO THPALR
i

n4F C5 ARCSD: SEL FBD (WRITE THPADR TO PIL REE4
0230 FF N A,RT

Mzl 03 SEL KBl

1382 B 1L R, #RERA

54 DEIE CALL WPl

N5k BI04 oI #RL, BARCS 1 5ET AR=daCs

IF AAU.ACZS THEM AAUSO

i
W
L]
"
u
i

1258 [463 ACSI: CALL AMUTK : CHECK FOR AAU.4COS
1798 SE0F D AAusD < NP 1F TRUE
0250 83 RET
1ASIS STATE
:SEF TWPROR=ANESS, ADRMSK ISTRIP HON ADDRESS BITS)
{ INCR RWESS FO8 NES SENERATION
WI50 FA GEISOr WOV AR2 | ETORE AMESS. ASRMSK [N THPAIR
®E §T0F WL A, WADEMSK

A3
Mountain Computexr, Inc. Copyright 1982

GVCET SYSTENS 8948 CROBS-ASSEMBLER -

SOURCE FILE NeRE: EPROMIY. ASA

VERSiON 1.3

GIb0 3 L RED

ilal &F Hov RY.4
rhd 03 L RB1

nlal LA IKC Lirs

0264 E108 oy #AL, #4515

BETSE: CALL

IF A&U.ACES THEN A&U180
t1F WEZ.DACS THEN AlPsh

0i4s THAS ARLECE

ilal FLOF JHI halEs

2ok Fl Ny A R2

izl 3IEG AL f, 48 5H5K

gl JICA IRL A, HAER

OZaF 98TE JHE HSISIR

P e HOY R, &0

27y Fia 1L B, a0

T 5Iag ARL A OACE

d2Th &M JHI HHFSD

s a7 HEISIR: RET
1RWFS STATE
]
1SET SECAZR = TWPADR

b ki i AkPSh: SEL REd

nITe EF HOW a4, &7

TR WE Y B, il

a2 SEL RE!

WETD BiLG b by whl, #8F5
t[F AALLACDS THZN AALSD
1iF AEP.ACTS THE A&ECH0
11

H3TF 8487 FUESL: CALL ARLLCKE

o281 OR0F JHL Eals0

D187 TR ChaLL HUOCK

785 CABE J? EEPSLAR

0I87 FA& Moy G, RZ

G288 53ED Al o, BREFMEN

(i R T iRL A, NEEP

28 CEBF 1z BzCe

(IEE =T AWPILR: RET
s4ECE STATE
|
§EET FEGAs RMESE, AZRMEN

N2EF 4 BECSZ: MOV 4,82

4290 5TOF AML b, SATENEK

015 BEOY L[IE R, #REGS

Mountain Computer,

4 INC RHESS FOR MES GEMERATION
s5ET &A=ASIE

1CHECE FIOR AALY, ACDS

jCHECK FOR MES, MOT CHECKIRG FOR RDV

JRETURM IF -MEW
sCHECK FOR DACS

jdNP IF TRUE

(SET RbaR7

:SET Ad=ANPS

;CHECK FOR @gafl, aCOs

JW IF TRUE

sCHECK FOR ACDS.REY.WALIE ADDR
{RETURN IF FALSE

sCHECK FOR AE®

NP IF TRUE

s SAVE PRIFARY ADDR TO FIL REEA

A4

Inc Copyright 1982

AMICEY SYSTEMS G045 (ROES-4BEEMELER - VERSION [.7

STURCE FILE HAhE: EPRONLY.ASH

a7 4K

Mo 220

[B [
208 AP

s 8. M

([F AR,
i
HELEL:

call WAPIL

v iRE . FRECS 15ET d&=4FCS
ACSS THEM AsUs0
CALL asucry =CHECE FOR &AW, ache
JHI dadlgh 1elP IF TAIE
RET
A5

Mountalin Computer,

Ine. Conyright 1982

AVOCET GYETEMS 8048 CROGS-4SSEMBLER - “ERGIDN 1.3

SOURCE FILE WAME: EFRONIS,ASH

g

ab00 0%
1001 ES
M0 14IE
04 1348
il 1958
iee 73
W09 1400
MR E5

{0iC B4i6
0E 1443
TN RS T
12 1458
inid 2435
ofls 78T
Hte S0
nota 3481
C TEOR
e S457
Q@0 20
nnIr TAEC
T4 TERB
nn2a F3

MTT 1847
002% ES

e DEIE
(020 440

(RLEEE PROGRAN STARTS HERE mRiER

1
tRESTART LOCATIONS

IR

oH

(FUMER N &ND RESET START WERE

+ INITIALEIE THE CHIP FOR PONER ON

[NIT: SHEL
SEL
CALL
CALL
ChL
SEL
CALL
SEL

®B1
21
INITPC
INITEN
INTTAR
ME
INITR
2t g1

yHOEMAL STATE FOR REGISTER BANEK

s INITIAL BAME SELECT

t IRITIALIZE THE PIL CHIP
1INITIALIIE THE STATE ACHMINES
tINITIALIYE LOCP AODR FOR FOMWER LF

tINITIALIZE THE DEVICE

teLL STATE MACHIMES ARE BERVICED aND THEN THE DEVICE IS SERWICED.
+THIS 15 THE CORE TO THE SYSTEM, WITH THE REBT BEING SUEROUTINES,

MAIN: CALL
CALL
CALL
LaLl
CALL
CRL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
L
CALL
oL
CALL
THP

CHPSTS
ZH5H
SHSH
5N
if8-1}
TSN
ARSH
LEGH
LS
TESH
T5m
RLGSH
ALEN
Al
BEVICE
HED
CPHMD
HAIN

Mountain

18ET STATUS OF PIL CHIP
jCALL ACCEPTOR RAMOSHAKE MACHINE
pCALL SOUIRCE MAMDSHAKE MACHIME

jCALL DRIVER NACHIME

tCALL BEVICE CLEAR MACHINE
jCALL DEVICE TRISGER MACHINE

CALL AUTD ASDRESS MACHINE
+CALL LISTEN EXTEMOED MACHINE

sCALL LISTER MACHINE

jCALL TALKER EXTEMOED MACHINE

sCALL TALKER MACHIKE

tCALL REMOTE LOCAL SECOMDARY MACHINE
rCALL BENOTE LOCAT MACHINE

+CALL DEVICE SERVICE ROUTEME

PCALL THE PIL CHIF MAMDSWAEE CHECEER
130 T0 START OF MAIN CORE

Computer,

AS

Inc.

Copyright 1982

PONS

EGDEE

Figure 1

AdLl= ACTDS

NES = STRS
ZES = ACDS
Messages
autn address MAA next cubts oddress
auto address unconfigure MES next extended secondary
auto extended primary MMP next multiple primary
auto extended secondary ZES zero extended secondary

gute multiple primary

Interface States

auio addrass configured siate ACDS occeptor dota stote (from AH)
auts address increment state (finks to SH) PONS power on stote (frem PO)

guts address unconfigured stote (links to R) STES sourca transfar stote (from SH)
guto extanded configured stote. (finks ta LT)

aute multipla increment stata (links ta SH)

auto primary Incramant state (lInks to SH)

guto secondary increment state (links to SH)

guto wait for primary atote (linka to R)

auto wait for sscondary state (lnks to /)

AT

