Module 3: Hardware and Assembly Language

- WHAT LIES AHEAD?

m Romping barefoot through memory
m Spelunking in the hardware caverns
m DEBUG driving lessons

m MASM flight test

Notes: PPAJAQQO

Portable PLUS SE Training 3=1 May 1985

Module 3: Hardware and Assembly Language

' N
8086 CPU
FREQUENTLY-USED REGISTERS
AH AX AL
= B}X — General registers (8 or 186 bit)
CH cX cL :
DH DX oL '
=] Index registers (18 bit)
o] f g /
ES ; 2 ;
o Segment registers (15 bit)

e 16 Dits ————m

16 bits can represent 216 = 65536 (684K) memory locations. How
can a 16—bit CPU access more than 84K of memory?

Vi @SN _J

PEAlAC1Q PACKARD

Notes: PPA30L0

The 8086 is an upgrade of the 8080--an 8-bit CPU with lo-bit
addressing. Some of the strange organization of the 8086 can be explained
as necessary 1o maintain upward compatibility from the 8080.

The GENERAL REGISTERS are where most data manipulation takes place.
These may be used as l6-bit registers (4X) or &-bit registers (AH and AL).

INDEX RECISTERS and SEGMENT REGISTERS are used for memory addressing.

Portable PLUS SE Training 3-2 May 1985

Module 3: Hardware and Assembly Language

~
. 8086 CPU
MEMORY ADDRESSING
m Memory addressing is always done with two "16—bit
quantities:
o 16 bits locate a byte within o 84K ''segment"
o 16 bits locate the segment within @ 1 MB cddress space
m The address is calculated as follows:
16—bit offset
+ 16—0bit segment
20—bit address (not 32—bit!)
Example: ‘ :
offset 1001 H 0001 0QQ0 0000 QaQQ!
+ segment 2002 H + 0010 O0Q0 0000 Q010 -—-—
address 21021 H Q010 00Q1 00Q0 QQ10Q 0001
Ln-amza @gf‘gksig —
Notes: PPAIA020

Because the segment and offset overlap, a segment may begin at any
multiple of 16 bytes (a "paragraph').

Portable PLUS SE Training 3-3 May 1985

Module 3: Hardware and Assembly Language

7 p
COMMON ADDRESSING USAGE
T 1 »i *
H AX AL m Most instructions use DS as the
L segment.
B 3?(ol DS: offset
cH CcX cL
DH DX oL m String instructions use two addresses.
DS:SI is the source
sl ES:Dl is the destination
Ol B BX may be used to form a 3—register
address in c¢cnjunction with SI or DI
s For exampile,
oS DS:(SI+BX) s an address caicuiated, thusiy:
8X 0QF4H I
Si 1001H :
oS 2002 H ;

Address 21115H

PRASAQIC

Notes: PPA3A030

Addresses are usually written as a segment register, a colon, and
whatever follows the colon defines the offset. Cffsets may be:

- A fixed value (for example, the storage loccation of a
variable used by the program).

- The value currently contained in SI, DI, or BY.

- The sum of SI and BX, or DI and B¥ (useful for
finding entries in a table).

String instructions not only work with two memory locations, but also

handle autcincrement or autodecrement and multiple repetitions. More on
that later.

Portable PLUS SE Training ‘ 3-4 May 1985

Module 3: Hardware and Assembly Language

1/0 ADDRESS SPACE

MAIN ADCRESS SPACE

rPOHTAB'LE PLUS MEMORY MAP (OVERVIEW)

b | ¥
10000H [128K
Main memoary/edisc LROOOHE e e e D
boundary set by PAM : 128K : +
Unlocked edisc
4000QH Locked adisc
128K
_: 128K T
8000CH | i—1 6K — Dispiay memo
84000H ettt e ees e “ "
30ogok T :
I S || PO
£ : RAM beyond 512K
; i | (bank switched)
B
DOGCOH [)
i
192K j Built=in ROM
FFFFFH
N
PRASAQ4O
Notes:

Portable PLUS SE Training

3-5

B |HEWLE
L PACKARD

N

} Built—-in RAM

i
Add—on RAM
(first 3 biocks) |

PPA3A040

May 1985

Module 3: Hardware and Assembly Language

i

PORTABLE PLUS DISPLAY MEMORY (ALPHA)

e————— 150 BYTES 54 8YTEs | 32 |
80000H 1. KEY LABELS |
80200H ! i

i 5 FONT

TOP OF 0
PAGE —
B =: .
OINTER | 82 LINES OF FONT
CHARACTER /ATTRIBUTE -
PAIRS
FONT
1
| i |
84000H ‘
\Lp-‘.uago @;m _J
Notes: PPA3AQS0
Single-line scroll to page top pointer, display automatically skips
key labels.

Charactefs created on the fly from font table lockup plus enhancements

from attribute byte.

Refresh rate 60/seccond.

Portable PLUS SE Training

3-6

May 1985

Module 3: Hardware and Assembly Language

o= : N
PORTABLE PLUS , f
DISPLAY MEMORY (GRAPHICS)
; - 60 BYTES - 4
80000+ [ROW O T
80040H | ROW 1 o
80080H | ROW 2 - |
: |
TOP OF e
PAGE — EACH BIT OF BYTE ol
FOINEER REPRESENTS A DOT, I
z‘ MOST SIGNIFICANT 2
BIT ON LEFT i 5]
|
| .
§3F80H | ROW 254 .
83FCOH |_ROW 255 |
84000H ;
PRASACEO @?ﬁkﬁ{é —
Notes: : PPA3AQ60

Cne line (pixel) scroll possible with pointer change.
Four bytes per line unused (480 dots of 512 used).

Alpha and graphics mutually exclusive (same space), but you can do
alpha in graphics via interrupt 1lOh.

Portable PLUS SE Training 3-7 May 1985

Module 3: Hardware and Assembly Language

~
DEBUG
What can it do? Where is it?
® Excmine and modify m Hidden subdirectory
a Memory
o Disc—based files Where is the documentation?
|/Q address
s V/ s m Programmer's toolkit,
CPU ister .
= PRGLSMEER Series 100 Macroassembler
m Stepwise execution of section
programs
ms Program editing 1|
g Disgssembie
a Assembie
g Search/compare i
PRA3ICO1Q @:ﬁmn -"-‘-/
Notes: PPA3CO10

The debug utility can examine or medify any byte(s) in RAM or on disc,
ineluding boot sectors, file allccation tables, and directories.

When used to step through a program, DEBUG’s ability to examine and
medify CPU registers or I/O addresses 3implifies program debugging.

Debug is built into every Portable PLUS but not documented. It

B:\BIN\EIC hidden directory.

Portable PLUS 3E Training

3-8

is in the

May 1985

Module 3: Hardware and Assembly Language

USING DEBUG TO EXAMINE MEMORY

Any location in main memory (except protected edisc)

may be examined with the (D)ump command.

Let's try it:
Type DEBUG [Return]
D 8000:0 [Return]
What do you see? (Hint: press [Menul.)
Explain the meaning of each byte.
Type D [Return] te (D)ump the next 128 bytes.
What is _the trash in the last 96 bytes?
Type Q [Return] to (Q)uit DEBUG.

Extra credit: chanmnge one character to font 2 and
blinking.

= HEWLETT
PACKARD

PEA3CO20

Notes:

Portable PLUS SE Training 3-9

)

PPAICO20

May 1985

Module 3: Hardware and Assembly Language

2 ' i
EDISC MEMORY MAP]
Memory /edise ——= "ot o TS
boundary as
set by PAM : :
3 i File storage area
A : g
12 byt 5
=0 Byse Root directory — 4 sectors,
sectors .] 1
64 entries f
|
FAT — 1 to 12 sectors=
SECTOR 1
[SECTOR 0| Boot sector and first 384 checksums !
i Checksums — Q to 7 biockss, |
Y : : 512 bytes each !
i
= Size depends on gmount of mermory installed. 2
: |
HEWLETT)
PRASCO30 @PMWD
Notes: PPA3IC030

Edisc is 512-byte sectors.

If memory size is no larger than 512K, the low numbered sectors are at
high addresses and sectors are sequential in reverse order. (Within the
sector, bytes read from locw to high address, but_at the end of the sector,
the next sector is normally found at a lower address.)

If memory size is above 512K, the first 256 sectors are in the first
block-swapable 128K, then other block-swapable memory is used, then the
highest-numbered sectors are in the low 512K of memory.

The operating system supports up to 2MB of edisc, plus 512K of main
memory.

To minimize wasted space, the areas reserved for checksums (one byte

per sector) and the File Allccation Table are of variable size depending on
the amount of memory installed.

Portable PLUS SE Training 3-10 May 1985 °

Module 3: Hardware and Assembly Language

USING DEBUG TO EXAMINE A DISC

Any file or sector on a disc may be examined with
the (L)oad command.

Let's “rv it:
L Cs:100 0 0Q 12
(load 12 sectors starting at sector O, from drive A to CS:100)
D CS:100 shews the first quarter of boot secter |
look in second row, Sth, 6th, and 7th bytes
7th byte is the number of sectors devoted to FAT
5th and-8th bytes are maximum number of sectors on disc
(set by PAM)
D three rmore times gets through the first 384 checksums
D four times per FAT sector
D shows the beginning of the directory

To examine a file, simply load it when invoking DEBUG:
DEBUG filename
The file will be copied te CS:100.

| HEWLETT

S®AICO40 | PAGKARD

Notes: PPAICO40

Debug can load files or sectors inte memory for examination,
modification, and writing back to dise. (Don’t write changes back to the
disc unless you know what you’re doing--changing the first few sectors can
render the whole dise inaccessiblel)

The boot sector includes the name of the machine which formatted the
dise (45711) and lots of other information sbout the disc. Most of a boot
sector is undefined on a floppy disc, but the Portable PLUS uses the last
3/4 to store checksums. (FF is the checksum for a sector which has never
been used.) '

The File Allocation Table is 2 collecticn of 12-bit pointers which
link the records of each file.

Each directory entry is 32 bytes and includes such informaticn as time

and date last modified, file type, file size, and sector number of the
first sector.

Portable PLUS SE Training 3-1l May 1985

Module 3: Hardware and Assembly Language

I/O0 ADDRESS SPACE

m Independent from main address space
m 64K range
m Used for‘:.

o Passing data and messages between 3086

and other intémgent beings

o Configuration EPROM lives here

E}'—) HEWLETT S

PEAIED1O et PACKARD

Notes: PPA3EOLD

Portable PLUS SE Training 3-12 May 1985

Module 3: Hardware and Assembly Language

INTELLIGENT BEINGS

The 8086 uses |/0O addresses to communicate with:

m PPU (Peripheral Processor Unit)
’ a Cbntroi of power supplies, uperating modes, alarm,
reagl—time clock, and beeper
= Runs even while in sleep mode

m Display controiler
g Dynamic font generation
o Communication with LCD controiler

m HP-—IL Interface controller
m Serial Interface controller and timer

m Keyboard/modem controller and timer

gfgmo "_')

PRASEC20

Notes: PPA3E020

The PPU brings the system up after drawer changes or hard resets, puts
the unit to sleep, runs while asleep, and provides the real-time clock.

The display controller takes the LCD RAM and uses it, along with
current settings for alpha cor graphics mode, window loeation, cursor
location and top of page location, to generate a dot pattern to ke sent t
the LCD controller (and the optional video output).

The HP-IL controller is a standard part which is documented in cother
manuals.

Twe "kitechen sink" chips control the serial interface and keyboard and
modem respectively. (One chip can handle both the keyboard and modem
because both are slow.)

Note the two timers and cne real-time clock, above and beycnd the two
oseillators which run the 8086 and the LCD controller. One timer provides
the MS-DOS "heartbeat" while the other keeps track of timecuts and such.

Portable PLUS SE Training - 3-13 May 1985

Module 3: Hardware and Assembly Language

CONFIGURATION EPROM

m EPROM is 8K x 8 bits, could be 16K (or half of 32K)

m Config ROM contents include:

Univ .arial number

PAM and TERM messages (localized)

AUX timeout value {10 seconds, affects hardware handshake only)
Key repeat rate (29 per second)

Numeric keypad location

System power constants (fer PPU)

n

Coerdinates of status block

Mute tcbles

Country—specific information (except US, UK, German, Spanish)
Miscellaneous defaults: PAM settings, screen contrast, etc.

0O0o0oo0Oooonoaonaon

Code patches!

m What is the version of your Config ROM?

k,.,.,_,m ;Fgmc —
Notes: PPAIE0IQ
The AUX driver, unlike the 110, will not time out after receiving an
ZOFF.

The key repeat rate is over twice as fast as the 110, but no repeat
happens unless the buffer is empty. Therefore, repeat rate will often be
limited by the applicaticn.

The power constants tell the PPU how much power is used by the serial
interface, etc. for use in its fuel gauge calculation.

The status block elements (toggle key indicators, time, cursor
position) can be located anywhere on the screen.

Mute tables determine whether the cursor is advanced after hitting the
umlaut key, etec.

Portable PLUS SE Training _ 3-14 May 1985

Module 3: Hardware and Assembly Language

Country-specific information includes local currently symbols, radix,
uppercasing table, ete. The primary languages are included in the system
RCOMs.

Because the EPROM contains ccde patches, to know what version of

software a customer has, you must check the EPRCM version. (Rebcot and
wateh the upper right corner of the screen.)

Portable PLUS SE Training 3=15 May 1985

Module 3: Hardware and Assembly Language

~

-
USING DEBUG TO ACCESS |/O ADDRESSES
Exercise: Use DEBUG's (I)nput command to determine
the contents of your drawers.
Syntax: | <address>
Addresses of 00COH drawer under [Caps], first half
interest: 0ODOH drawer under [Caps], second haif
QOEQH drawer under [Return], first half
0OFOH drawer under [Return], second haif
Commeon values: OQH nobody home
2XH ROM drawer with capacity for X x 256K
of ROM
4YH Y x 128K of RAM
\wueu1q @;ECWKLAEAT; _J
Notes: PPA3GOL0

For each drawer (and virtual drawer), there is a status byte which
This status byte is cbtairzed by (I)nputting
from the appropriate I/0O address.

indicates the drawer contents.

Portable PLUS SE Training

3-16 May 1985

Moduie 3: Hardware and Assembly Language

- 8086 INSTRUCTION SET

m Data movement instructions
o MOV instruction

o String instructions

m Data manipulation instructions
.8 Math operations
o Logic operations

m 8086 flags

m Branching instructions

N HEWLETT J
PRA3IO10 PACKARD

Notes: PPA3I010

Portable PLUS SE Training 3-17 May 1985

Module 3: Hardware and Assembly Language

: N
DATA MOVEMENT - MOV INSTRUCTION
Instruction Meam'ng
™ - 2 MOV AL, 255 Move the decimal value 255 (all
: a :: bits 1) intc the AL register,
oH o o repiacing existing value
I : MOV AL, [255] Move a byte from 0S:255 to AL
! :: MOV AL, ES:[255] Move g 'byta from E£5:255 to AL .
MOV AX, SI Copy SI to AX (Sl is unaffected)
MOV AX, [Si] Move g word from DS:Si to AX
Mov [Di], BH Mcve g byte from BH to DS:0I
MOV BYTE PTR [Bx], OFFH Move FFH (one byte) to DS:8X
o @R —
Notes: PPA31020

Whenever an instruction has two cperands, the first is the
destinaticn. The source is unaffected.

Numbers are decimal by default. You can change the assembler’s
default or follew numbers with B or H to indicate binary or hex.

Numbers without brackets are used as-is; anything in brackets is an
offset intoc memory where the actual data is moved frcm/to.

For register-to-register mcves, size must match.

Hex numbers must start with a digit O through 9. For hex numbers
which start with A through F, precede with a zero.

For moves where no register is the source or destination, the
assembler dcesn’t know the size of the data. Tell it with "BYTE PTR" cr
"WORD PTR".

Portable PLUS SE Training 3-18 : May 1985

Module 3: Hardware and Assembly Language

~
SIMPLE MATH INSTRUCTIONS
Instruction Meaning
o AX " ADD AX, CX Add AX and CX with the resuit in AX,
™ ax B throw gway any overflow.)
cH cX cL
oH DX oL
SuUB si, 8 Subtract 8 from Si with result in Si,
St borrow if necessary.
ol
= SHR BL, 1 Shift the bits in BL right by one,
oS throwing away the low bit and putting
a zero in the high bit. This is a divide
by 2 and trash the remainder.
MOV CL, 3 Shift BX left three bits. This is a
SHL BX, CL muiltiply by 8 and trash any overflow.
PRASIC40 @:Ecww —
Notes: PPASI040

Portable PLUS SE Training

3-19 May 1985

Module 3: Hardware and Assembly Language

MATH EXAMPLE: WAYS TO ADD 1+1

MOV AL, 1 Move a one into AL
INC AL Add one o AL
AH AX AL
| ™ ax BL MOV AX, 1 Move cne inte AX
cH [ord a MQV DX, 1 and OX,
on ox oL ADD AX, DX add them into AX
Si MQV CH, 1 Move cne into CH
ot ADD CH, 1 Add one to CH
g: MQV DI, 1 Move one into DI
MoV [S1], DI Copy it to DS:SI
ADD DI, [S1] Add Dl and DS:SI

MQV BYTE PTR [SI+BX], 1 Put one at DS:(SI+BX)
INC BYTE PTR [Si+3X] . Add one to it

ISN'T THAT ENOUGH FOR NOW?

(@) g&vusrr e

HARD

alI080

Notes: PPAIT050

Portable PLUS SE Training 3-20 May 1985

Module 3: Hardware and Assembly Language

LOGICAL INSTRUCTIONS

m OR

o Useful when you want cll the bits of two values.

o Example: OR AX, 3 Sets the low two bits to 1, other

bits are unaffected.

m AND

g Useful when you want to mask off unwanted bits.

o Example: AND AX, 3 Low two bits are unaffected, other

bits become zero.

m XOR

o Quickest way to set a register to zero: XOR AX, AX
o Useful for changing some of the bits.

o Exampie: XOR AX, 3 Low twe bits are changed, cther
bits are unaffected.
m NOT
o Te change ail the bits.
o Example: NQOT AX All bits are changed.
[T FET-TT) :fcwmﬂ
Notes:
Portable PLUS SE Training 3-21

S

PPA3I0GD

May 1985

Module 3; Hardware and Assembly Language

e

" I
8086 STATUS FLAGS
a AX A s Zero flag Last operation resulted in all
L, IR L zeros
H X L
oM DX oL
a Carry flay Last operation ccused g carry
St (add) or borrow (subtract)
s beyond the highest bit
=
2S s Sign flag Last operction generated a
negative signed integer
FLAGS
s Overflow flag A signed integer went out of
range
= Auxiliary carry A carry out of the four lowest
flag bits
m Parity flag Last operaton resulted in an
even number of "1'" bits
PRAIKO10 @:Ecwmn —
Notes: PPA3KO10

The flags register is strange in that only nine of the bits are used.
Six of these bits give you summary information about the result of the last
operation. The location of the bit is irrelevant, but the informatiocn It
signifies may be useful.

The first two flags listed are the cnes you are likely to.use.

The zero and carry flags are used tcgether to determine whether the
result of an cperation was positive, negative, or zero.

The carry flag is used to check for out-of-range positive integers
(which may be an error, or just because you need to adjust the next-higher
part of a multi-byte number).

Carry is also used to hold the spare tit moved cut by scme shift and
rotate commands.

Portable PLUS SE Training 3-22 May 1985

Module 3: Hardware and Assembly Language

r %
EXAMPLE - FLAGS SET BY SUB (OR CMP)
Basylk of Flag settings:
subtragct is: Example: Zero Carry Sign
Positive Q0011011 NZ NC PL
-00001100
Q0C01111
Zero QoCco1111 ZR NC PL
-Q000011 11
00000000
Negative Q0000000 NZ CY NG
- =0Q0000001
117111111 :
anaaa chwﬂ —) '
Notes:) PPAIK020
When subtracting positive integers, the sign and carry flags contain
redundant information. (This is not true of the ADD instruction or signed
subtraction.)

Note that decrementing zero results in all cnes--this can cause
disasters unless you check for negative results. For example, you
calculate an address which lands you 64K from where you should be!

Portable PLUS SE Training 3-23 May 1985

Module 3: Hardware and Assembly Language

8086 BRANCHING INSTRUCTIONS -
UNCONDITIONAL

m Unconditioncl branches can be near (intrasegment)
or far (intersegment)

m Branches can be one—way (JMP) or round—trip
(CALL)

m Examples:

infinite: JMP infinite
infinite: CALL subroutine
JMP infinite
subroutine: RET
PEAIKOIQ C@:gmo —
Notes: PPAIK030

Portable PLUS SE Training 3-24 May 1985

Module 3: Hardware and Assembly Language

~
8086 BRANCHING INSTRUCTIONS -
- CONDITIONAL '
m Conditional branches span only 127 bytes
m 19 instructions, mest with twe names
m Four instructions:
Insruction Meaning
JE label or JZ label Jump to label if zero flag is set
JNE label or JNZ labei Jump to label if zero flag is not set
JB labei or JNAE labei Jump to label if carry flag is set
or JC label
JBE label or JNA label Jump to label if carry or zero flag is set
m Example:
Infinite: CR AX, 1
JNZ infinite
e @PEERe —
Notes: PPAIK040

Conditional branches allow you to test one or more flags and make a
jump according to flag conditions.

Not all instructions set flags! For example, MOV does not.

Portable PLUS SE Training 3-25 May 1985

Module 3;: Hardware and Assembly Language

WHAT NOW?

m Writing assembly language programs
o Using development tools

O Assembier lab #1
m Program addressing
m Program debugging
m Stack cddressing
m Stack instructions

m Miscellaneous instructions

BEASMOOO

Notes: PPAIMO00

Portable PLUS SE Training 3-26 May 1985

Module 3: Hardware and Assembly Language

o= : E

CREATING ASSEMBLY-LA NGUAGE PROGRAMS

1. Use editor to create source file(s) PROG.ASM
2. Assemble source file(s) - ' C:MASM PROG [Return]
[Return]

PROG [Return]

[Return]
3. Link cbject code module(s) C:LINK PROG [Return]
[Return]
[Return]
[Return]
4. Shrink .EXE file to .COM file C:EXE2BIN PROG PROG.COM
: O HEWLETT ___/
e (@R
Notes: PPAIMO10

A scurce-code file is a simple ASCII file which contains:

- Directives - information for the assembler
- Instructions - 8086 instructiocns
- Comments - informaticn for the programmer

The macroassembler takes the source file and attempts to convert it to
machine instructicns--an object file.

The linker takes one or more object files and puts them in executable
form--an .EXE file. Ignore the '"Missing stack segment" error.

If the assembly code i1s a stand-alone program, it will take less space
as a binary prcgram. EXE2BIN strips off some miscellansous overhead and
shrinks it to a .COM program. (Default result is a .BIN file which must be
renamed .COM to run.)

Portable PLUS SE Training 3-27 .May 1985

Module 3: Hardware and Assembly Language

CREATING SOURCE FILES

m Where?
a 2n any MS—DOS machine
m With what?

o Any editer which creates simple ASCIl files

Editor ASCIl File?
Mince Yes
MemoMaker, WordStar Non—document file
MS Word Unformatted file
MuitiMate MuftiMate /ASCIl utility
_ .
e - @R —
Notes:

PPAIMO20

See next page.

Fortable PLUS SE Training 3-28 May 1985

CSed

START

DONE:

START

CSEG

Module 3: Hardware and Assembly Language

e e we

AGE 60,132

.

?

SAMPLE ASSEMBLY LANGUGAE PROGRAM SHELL

=z======

;determines page height and width of
.LST file

3
TITLE whatever title you want cn each page of .LST printout

SECMENT

ASSUME CS:CSEG, DS:CSEG

;
El
ORG 10CH

PROC FAR

wE owa e e e

MOV AX,4CO0H
INT 21H

ENDP

e s wa wa ws wE W e

END 3TART

Portable PLUS SE Training

;labels beginning of cocde segment

;both CS and DS point to beginning
of program

Define all constants here with the
EQU statement (labels to be used instead
of numbers for programming convenience).

;pregram entry peint is CS:100h

;bhis is the entry point

Program code gces here.

; junping to DONE sends you back to DOS
;defines the end of main program

Subroutines (accessed with the CALL
statement) go here. The RET statement
sends you back to the line following
the CALL.

;defines the end of code segment

;defines the end of program file

3-29 May 1985

Module 3: Hardware and Assembly Language

~
~SOURCE FILE SY N_TAX
" Refer to sample program shell
® Syntax rules:
o Anything following a semicolon is ignored
o Anything starting in first column is g lcbel
— Branching labeis end with o colon
— Directive]ubéis have no colon
o Anything else must be g directive or instruction
= @heNEs —/

Notes: PPA30010

Portable PLUS SE Training 3530 May 1985

Module 3: Hardware and Assembly Language

7 - N
ASSEMBLER LAB #1
Write a .COM program which beeps
the beeper by making direct access
to the PPU.
Caution:
Improper access to the PPU can
result in degth or dismemberment!
L""'-m - ’ @ty —
Notes: PPA3QO10

Portable PLUS SE Training 3-31 May 1G85

Module 3: Hardware and Assembly Language

‘s .
LAB #1 - BACKGROUND
From Technical Reference Manual, section 7-=3:
m PPU access protocol:
o Check to- see if PPU is tusy,
o |If busy, check again
g If not busy, immediately send command to PPU
m PPU status byte:
o At |/0O address Q042H
a Bit 6 zerc indicates not busy
m PPU command:
o Send to |/O address O060H (single byte)
o Beep command is 7DH
b B3
Notes:

gy’

PPA3QO20

The PPU is pericdically busy doing various chores--clock update, prior
beep, ete. It cannot accept commands while busy--you could send it out to
lunch. When not busy, the PPU clears its busy status bit and will accept

any command which comes in during a (short) time window.

Because the status check must be followed quickly by the command, you

cannot safely beep the beeper from DEBUG.

Portable PLUS SE Training 3=32

May 1985

Module 3: Hardware and Assembly Language

LAB #1 - FLOWCHART

(o -

GET PPU
STATUS BYTE

A

ISOLATE THE
BUSY BIT

SEND BEEP

Notes:

Portable PLUS SE Training 3=33

COMMAND -

HEWLETT
PACKARD

o

PPA3QO30

May 1985

Module 3: Hardware and Assembly Language
Jo*

Notes: PPA3QO40

Pertable PLUS SE Training 3-34 May 1985

Module 3: Hardware and Assembly Language

(— N
ADDRESSING OF PROGRAM INSTRUCTIONS
™ X m m Two registers dedicated to program
Y 8X B :
= cx @ addressing:
| oM DX x
g Code segment
Sl " i
ol g Instruction counter
ES
== m Next instruction is at CS:IC
FLAGS |
= m Near jumps aiter IC
cS g
m Far jumps aglter beth CS and IC
LPPA.:IQ‘!Q - ! gm !
Notes: PPA3S010

The 8086 keeps track of its locaticn in a program so it knows where to
fetch the next instruction.

The instruction counter is alsc kncwn as program counter. (Debug uses
IC.)

Portable PLUS SE Training) 3-35 May 1935

Module 3: Hardware and Assembly Language

PRINTING A .LST FILE

m Set printer to compressed print
m Go into MS—DOS commands

m PRINT BEEP.LST

s What you get:

102 24 40 and al, 64 ; mask off all but busy bit
e J
=y ~"

Instruction as it appears in source file

Binary representation of instruction

Offset of instruction
(bytes are located at CS:102)

HEWLETT ___/

PRA3ISO20 @ PACKARD

Notes: PPA1S020

The .LST file which is optionally created by MASM is useful for
debugging. Use MS-DOS PRINT to print it because lines are over 80 columns.

Instruction of fsets and the instructions are shown in hex form.
(Debug uses only hex, so this is appropriate.)

Portable PLUS SE Training 3-36 May 1985

Module 3: Hardware and Assembly Language

.COM PROGRAMS IN MEMORY

m Load DEBUG and BEEP.COM into memory:
DEBUG BEEP.COM

m Dump the program:

D CsS:100

Note similarity to bytes from .LST printout

m Ungssemble the program:
U CS:100

What does the JNZ statement say?

k;pgqa;n ;ECWKARQ —J
Notes: PPAIS030

In a .COM prcgram, the first 1l0Oh bytes are reserved fcr use by
MS-DOS, so the program begins at CS:100.

A dump at C3:100 shows the instructions in-less-comprehensible form.

Unassembling at CS:100 puts the instructions in more meaningful form,
but instead of labels, you get offsets.

Portable PLUS SE Training 3-37 " May 1985

Module 3: Hardware and Assembly Language

STEPPING THROUGH A PROGRAM

m Use Debug's (G)o command to step to last MOV
instruction:

G 10A

m Note:
g Contents of AL
o Status of zero flag
o Contents of IP
o Next instruction to be executed

m Finish the program:

G e
k; HEwLET _/

Notes:)) PPA3S040

Stepping through a program demonstrates the real power of DEBUG. This
is done with (G)o or (T)race. Trace is for single-stepping; Go can go te
anywhere.

The offset used with Go must be exact--using an invalid offset will
not stop the program and may trash the byte specified.

At the breakpoint, DEBUG shows the contents of all registers, the
status of flags, and the next. instructicn which has not yet been executed.

Portable PLUS SE Training : . 3-38 . May 1985

Module 3: Hardware and Assembly Language

= =5
8086 STACK ADDRESSING
ym X m Stack registers:
BH BX L
= cx = m Stack segment
= = = m Stuck pointer
= m Bagse pointer
= :
oS SS:0 —=
FLAGS |
IC |
cs : SsS:5Pp —»
Stack growth
== STACK .
ss ’ _ Stagck bottom
e @R —
Notes: PPA3U010

The three stack registers are the last 3086 registers to be discussed.
They define a storage area in memory to be used by the operating system and
programs for temporary storage. Data is piled on (pushed) or lifted off
(popped) the stack top.

The stack grows backwards through memory addresses. All data on the
stack is in 16-bit chunks.

In a .COM program, SS=CS and SP i3 initialized as FFFE hex. Hence, a
.COM program starts with 64K of memcry, with the program in the low address
end and the stack growing backwards through memory from 64K cut. The stack
can be relocated elsewhere if this isn’t convenient.

The base pecinter allows you to access the stack withcut removing
anything from it. For example, MOV AX, [3F] gets a word from SS:BP.

Portable PLUS SE Training 3-39 May 1985

Module 3: Hardware and Assembly Language

' ' N
8086 STACK INSTRUCTIONS
m PUSH copies a 18—bit register onto stack
Before : After
i
SS:SP — |
s$s:SP > PUSH DS W W W W
yrvr v Y Y v ¥
[W W W Ww]|os Z 2 2 2 [WWwww|os 2.2 2.1
m POP moves 16 bits from stack to a register
SSiSP —
W W W W POP ES a s
Yox XY LN
(7 7 7 7 e Z 2 Z 2 [W W W W ES 2 Z 2 2
Lm-.m.‘.-.t.w.lnn :.Ecw% —
Notes: PPA3U0L0

Push moves a word to SS:SP, then subtracts two from SP.
Pop adds two to SP, then moves a word from SS:SP.

There is also PUSHF and POPF for moving the flags onto and off of the
stack.

The sequence
PUSH DS
POP ES _
is ccmmon with segment registers because the MOV instruction cannot move
direetly from one to another.

Portable PLUS SE Training 3-40 May 1985

Module 3: Hardware and Assembly Language

8086 STACK USAGE
Who Uses the Stack?

m Your program
o CALL instruction (return address)
o Temporary data storage with PUSH/POP

m Interrupts your program initiates

m Inferrupts initiated by heartbeat timer

i 7 .
s B —
Notes: ' PPAIU030

Because subroutine calls keep their address on the stack, the
subroutine must clean up the stack before executing a return.

MS-DOS interrupts (to be discussed later) use -the stack.
The heartbeat generates a hardware interrupt 18 times per second and

will use the stack. This will happen at any point in the program but is
not a concern unless the stack is tco small.

Portable PLUS SE Training : 3-41 May 1985

| Module 3: Hardware and Assembly Language

’,——

DATA MOVEMENT - STRING INSTRUCTIONS

2|2|8|%
RIRRIX

BiR|R|F

* or subtract if Direction Flag is set.

Imstruction

Lcoss
LODsSW

STOSB
STOsSW

MOVSB
MOVSW

REF MCOVSW

Move

Move

Move

Move

Move

Mave

Repeat MOVSW instruction CX times

and the CLD instruction clears it.

ﬂ\

Meaning

byte from DS:Si to AL, add= 1 t» SI
word from DS:Si to AX, add= 2 to SI

byte from AL to ES:DI, add= 1 to DI
word from AX to ES:Di, add= 2 to DI

byte from DS:S! to ES:DI, add= 1 to beoth
word from DS:S| to ES:DI, add* 2 to both

The STD instruction sets this flag,

G HEVLETT /]

PRPASWO10

Notes:

PACKARD

PPAIWOLO

String movement insiructions are useful for repeated access to the
same memory area because of the autoinerement/autcdecrement feature.

The MOVS instruction is the only memory-to-memcry move instruction.

Any string instruction can use the REPeat prefix.

Portable PLUS SE Training

3-42 - May 1985

Module 3: Hardware and Assembly Language

OTHER STRING OPERATIONS

m Sccn string:
SCASB Compare the byte at ES:Dl to AL, set flags, increment DI

SCASW Compare the word at ES:DI at AX, set flags, add 2 te DI

m Compare string:
CMPSE Compare byte gt DS:Dl to byte at ES:DI, flags, increment
CMPSW Compare word at DS:Sl to word at ES:DI, flags, add 2

m Repeat examples: _
MOV AL, OFFH Scan through 256 bytes starting at ES:Dl and stop <t

MOV CX, 100H the first byte equai to FF
REPNE SCASB
MQV CX, 200H Compare two 512 word strings at 0S:S! gnd ES:Dl and
REPE CMPSW stop at the first inequality
\-_ =
PRPASWOZ0 EW“L:!E _J

Notes: PPA3WO020

Scan string allows you to search for a pariticular byte in a block of
memory. :

Compare string allows you to test strings for equality.

REPNE
REPE

repeat while not equal (same as REFPNZ)
repeat while equal (same as REPZ)

Portable PLUS SE Training 3-43 May 1985

Module 3: Hardware and Assembly Language

LOOPING INSTRUCTIONS

m LOOP label

o Decrement CX
o If CX is non—zero, jump to label

m LOOPZ label

g Decrement CX
o If CX is non—zero and zero flag is set, jump to label

'm LOOPNZ label

g Decrement CX
o If CX is non—zero and zero flag is cleagred, jump to label

m Example:

- MOV CX, 8000H
killtime: LOOQOP killtime

Notes: PPAIW 030

The locp instructions are the most powerful of the conditional
branching instructions. They ccmbine a decrement of the counter register
with a test for a zero count and can also test the zero flag at the same
time.

Portable PLUS SE Training 3-44 May 1985

Module 3: Hardware and Assembly Language

A ; ~
DATA EMBEDDED IN PROGRAM
tablel: DB 1, 3,5 7,11, 13, 17, 19 : prime number table
string1: DB '"This is a string", @
variabl+1: Db " ; word=—size variable
m Get dcta from g table:
MQV SI, offset tabiel ; point DS:Si tc table
MOV AX, [SI+5] . ; get the sixth byte
m Point to g string:
MOV DX, offset stringt ; DS:DX points to string
m Save a variable:
MOV variablel, BX . ; save BX for later
\7aanwua Gaﬂgucxann "“j
Notes: _ PPAIW040

Embedded data can be anywhere in a program; s.{mply be sure to jump
around it.

The define byte directive is one of several used to place literal
bytes into a program. Numbers denote byte values, wnile quoted strings are
assembled as ASCII character ccdes.

: When "offset" is used, the assembler replaces it with the offset of
the label given.

Portable PLUS SE Training : 3-45. May 1985

